967 resultados para Congenital Anomalies
Resumo:
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cutoff for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
BACKGROUND: This study describes the prevalence, associated anomalies, and demographic characteristics of cases of multiple congenital anomalies (MCA) in 19 population-based European registries (EUROCAT) covering 959,446 births in 2004 and 2010. METHODS: EUROCAT implemented a computer algorithm for classification of congenital anomaly cases followed by manual review of potential MCA cases by geneticists. MCA cases are defined as cases with two or more major anomalies of different organ systems, excluding sequences, chromosomal and monogenic syndromes. RESULTS: The combination of an epidemiological and clinical approach for classification of cases has improved the quality and accuracy of the MCA data. Total prevalence of MCA cases was 15.8 per 10,000 births. Fetal deaths and termination of pregnancy were significantly more frequent in MCA cases compared with isolated cases (p < 0.001) and MCA cases were more frequently prenatally diagnosed (p < 0.001). Live born infants with MCA were more often born preterm (p < 0.01) and with birth weight < 2500 grams (p < 0.01). Respiratory and ear, face, and neck anomalies were the most likely to occur with other anomalies (34% and 32%) and congenital heart defects and limb anomalies were the least likely to occur with other anomalies (13%) (p < 0.01). However, due to their high prevalence, congenital heart defects were present in half of all MCA cases. Among males with MCA, the frequency of genital anomalies was significantly greater than the frequency of genital anomalies among females with MCA (p < 0.001). CONCLUSION: Although rare, MCA cases are an important public health issue, because of their severity. The EUROCAT database of MCA cases will allow future investigation on the epidemiology of these conditions and related clinical and diagnostic problems.
Resumo:
OBJECTIVE: The purpose of this article is to present the specific public health indicators recently developed by EUROCAT that aim to summarize important aspects of the public health impact of congenital anomalies in a few quantitative measures. METHODS: The six indicators are: (1) congenital anomaly perinatal mortality, (2) congenital anomaly prenatal diagnosis prevalence, (3) congenital anomaly termination of pregnancy, (4) Down syndrome livebirth prevalence, (5) congenital anomaly pediatric surgery, and (6) neural tube defects (NTD) total prevalence. Data presented for this report pertained to all cases (livebirths, fetal deaths, or stillbirths after 20 weeks of gestation and terminations of pregnancy for fetal anomaly [TOPFA]) of congenital anomaly from 27 full member registries of EUROCAT that could provide data for at least 3 years during the period 2004 to 2008. Prevalence of anomalies, prenatal diagnosis, TOPFA, pediatric surgery, and perinatal mortality were calculated per 1000 births. RESULTS: The overall perinatal mortality was approximately 1.0 per 1000 births for EUROCAT registries with almost half due to fetal and the other half due to first week deaths. There were wide variations in perinatal mortality across the registries with the highest rates observed in Dublin and Malta, registries in countries where TOPFA are illegal, and in Ukraine. The overall perinatal mortality across EUROCAT registries slightly decreased between 2004 and 2008 due to a decrease in first week deaths. The prevalence of TOPFA was fairly stable at about 4 per 1000 births. There were variations in livebirth prevalence of cases typically requiring surgery across the registries; however, for most registries this prevalence was between 3 and 5 per 1000 births. Prevalence of NTD decreased by about 10% from 1.05 in 2004 to 0.94 per 1000 in 2008. CONCLUSION: It is hoped that by publishing the data on EUROCAT indicators, the public health importance of congenital anomalies can be clearly summarized to policy makers, the need for accurate data from registries emphasized, the need for primary prevention and treatment services highlighted, and the impact of current services measured.
Resumo:
OBJECTIVE: To compare the distribution of congenital anomalies within the VACTERL association (vertebral defects, anal atresia, cardiac, tracheoesophageal, renal, and limb abnormalities) between patients exposed to tumor necrosis factor-α (TNF-α) antagonist and the general population. METHODS: Analysis for comparison of proportional differences to a previous publication between anomaly subgroups, according to subgroup definitions of the European Surveillance of Congenital Anomalies (EUROCAT), a population-based database. RESULTS: Most EUROCAT subgroups belonging to the VACTERL association contained only one or 2 records of TNF-α antagonist exposure, so comparison of proportions was imprecise. Only the category "limb abnormalities" showed a significantly higher proportion in the general population. CONCLUSION: The high number of congenital anomalies belonging to the VACTERL association from a report of pregnancies exposed to TNF-α antagonists could not be confirmed using a population-based congenital anomaly database.
Resumo:
The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.
Resumo:
Objectives: Birth defects are a major health burden. Primary prevention is at present emerging, i.e. folate supplementation. When it is not possible, as is still the case for most birth defects, research is needed to determine how an optimal provision of prenatal diagnosis and use of services can be achieved. Ultrasound scans in the midtrimester of pregnancy are now a routine part of antenatal care in most European countries. The objective of this study was to evaluate the prenatal diagnosis of congenital anomalies by fetal ultrasonographic examination across Europe. Methods: Data from 20 registries of congenital malformations in 12 European countries were included. The prenatal ultrasound screening programs in the countries ranged from no routine screening to 3 fetal scans offered, including 2 for biometric purposes and 1 for search of congenital anomalies, the anomaly scan. Results: There were 8,126 cases with congenital anomalies with an overall prenatal detection rate of 44.3%. Termination of pregnancy was performed in 1,657 cases (21.8%). There was significant variation in the prenatal detection rate between regions with the lowest detection rate in registries of countries without routine fetal screening (Denmark and The Netherlands) and the highest detection rate in registries of countries with at least 1 anomaly scan (France, Germany, Italy, Spain, UK). However, there were large variations among the registries with a high detection rate. There were significant differences in the prenatal detection rate and proportion of induced abortions between isolated anomalies and associated anomalies (chromosomal aberrations, recognized syndromes, and multiple without chromosomal aberrations or recognized syndromes). Conclusions: Prenatal detection rate of congenital anomalies by fetal scan varies significantly between registries of European countries even with the same screening policy. Prenatal detection of congenital anomalies is significantly higher when associated malformations are present. The rate of induced abortions varies between registries of countries even with the same detection rate of congenital anomalies. The variation described may be due to cultural and policy differences. Copyright 2002 S. Karger AG, Basel
Resumo:
The EUROCAT website www.eurocat-network.eu publishes prenatal detection rates for major congenital anomalies using data from European population-based congenital anomaly registers, covering 28% of the EU population as well as non-EU countries. Data are updated annually. This information can be useful for comparative purposes to clinicians and public health service managers involved in the antenatal care of pregnant women as well as those interested in perinatal epidemiology.
Resumo:
BACKGROUND: As part of EUROCAT's surveillance of congenital anomalies in Europe, a statistical monitoring system has been developed to detect recent clusters or long-term (10 year) time trends. The purpose of this article is to describe the system for the identification and investigation of 10-year time trends, conceived as a "screening" tool ultimately leading to the identification of trends which may be due to changing teratogenic factors.METHODS: The EUROCAT database consists of all cases of congenital anomalies including livebirths, fetal deaths from 20 weeks gestational age, and terminations of pregnancy for fetal anomaly. Monitoring of 10-year trends is performed for each registry for each of 96 non-independent EUROCAT congenital anomaly subgroups, while Pan-Europe analysis combines data from all registries. The monitoring results are reviewed, prioritized according to a prioritization strategy, and communicated to registries for investigation. Twenty-one registries covering over 4 million births, from 1999 to 2008, were included in monitoring in 2010.CONCLUSIONS: Significant increasing trends were detected for abdominal wall anomalies, gastroschisis, hypospadias, Trisomy 18 and renal dysplasia in the Pan-Europe analysis while 68 increasing trends were identified in individual registries. A decreasing trend was detected in over one-third of anomaly subgroups in the Pan-Europe analysis, and 16.9% of individual registry tests. Registry preliminary investigations indicated that many trends are due to changes in data quality, ascertainment, screening, or diagnostic methods. Some trends are inevitably chance phenomena related to multiple testing, while others seem to represent real and continuing change needing further investigation and response by regional/national public health authorities.
Resumo:
Since 1988 the epidemiological surveillance of congenital anomalies (malformations, chromosomal aberrations, metabolic diseases, hereditary diseases, neurosensorial defects, etc.) is carried out by the Swiss registry of EUROCAT (European Registry of Congenital Anomalies and Twins). Several Swiss cantons collaborate through their own local registry, transmitting data to the central registry in Lausanne. We present the main objectives and methods of registration and give the global prevalence rates for the main malformations for 1996 and the period 1993-1996.
Resumo:
BACKGROUND: Maternal pregestational diabetes is a well-known risk factor for congenital anomalies. This study analyses the spectrum of congenital anomalies associated with maternal diabetes using data from a large European database for the population-based surveillance of congenital anomalies. METHODS: Data from 18 population-based EUROCAT registries of congenital anomalies in 1990-2005. All malformed cases occurring to mothers with pregestational diabetes (diabetes cases) were compared to all malformed cases in the same registry areas to mothers without diabetes (non-diabetes cases). RESULTS: There were 669 diabetes cases and 92,976 non diabetes cases. Odds ratios in diabetes pregnancies relative to non-diabetes pregnancies comparing each EUROCAT subgroup to all other non-chromosomal anomalies combined showed significantly increased odds ratios for neural tube defects (anencephaly and encephalocele, but not spina bifida) and several subgroups of congenital heart defects. Other subgroups with significantly increased odds ratios were anotia, omphalocele and bilateral renal agenesis. Frequency of hip dislocation was significantly lower among diabetes (odds ratio 0.15, 95% CI 0.05-0.39) than non-diabetes cases. Multiple congenital anomalies were present in 13.6 % of diabetes cases and 6.1 % of non-diabetes cases. The odds ratio for caudal regression sequence was very high (26.40,95% CI 8.98-77.64), but only 17% of all caudal regression cases resulted from a pregnancy with pregestational diabetes. CONCLUSIONS: The increased risk of congenital anomalies in pregnancies with pregestational diabetes is related to specific non-chromosomal congenital anomalies and multiple congenital anomalies and not a general increased risk.
Resumo:
BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.
Resumo:
BACKGROUND: This study describes seasonality of congenital anomalies in Europe to provide a baseline against which to assess the impact of specific time varying exposures such as the H1N1 pandemic influenza, and to provide a comprehensive and recent picture of seasonality and its possible relation to etiologic factors. METHODS: Data on births conceived in 2000 to 2008 were extracted from 20 European Surveillance for Congenital Anomalies population-based congenital anomaly registries in 14 European countries. We performed Poisson regression analysis encompassing sine and cosine terms to investigate seasonality of 65,764 nonchromosomal and 12,682 chromosomal congenital anomalies covering 3.3 million births. Analysis was performed by estimated month of conception. Analyses were performed for 86 congenital anomaly subgroups, including a combined subgroup of congenital anomalies previously associated with influenza. RESULTS: We detected statistically significant seasonality in prevalence of anomalies previously associated with influenza, but the conception peak was in June (2.4% excess). We also detected seasonality in congenital cataract (April conceptions, 27%), hip dislocation and/or dysplasia (April, 12%), congenital hydronephrosis (July, 12%), urinary defects (July, 5%), and situs inversus (December, 36%), but not for nonchromosomal anomalies combined, chromosomal anomalies combined, or other anomalies analyzed. CONCLUSION: We have confirmed previously described seasonality for congenital cataract and hip dislocation and/or dysplasia, and found seasonality for congenital hydronephrosis and situs inversus which have not previously been studied. We did not find evidence of seasonality for several anomalies which had previously been found to be seasonal. Influenza does not appear to be an important factor in the seasonality of congenital anomalies.