997 resultados para Conformation Changes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rapid and robust methods are required to quantify the effect of hydrodynamic shear on protein conformation change. We evaluated such strategies in this work and found that the binding of the fluorescent probe 4,4'-dianilino-1, 1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to hydrophobic pockets in the blood protein von Willebrand factor (VWF) is enhanced upon the application of fluid shear to the isolated protein. Significant structural changes were observed when the protein was sheared at shear rates >= 6000/s for similar to 3.5 min. The binding of bis-ANS to multimeric VWF, but not dimeric VWF or control protein bovine serum albumin, was enhanced upon fluid shear application. Thus, high-molecular-weight VWF is more susceptible to conformation change upon tensile loading. Although bis-ANS itself did not alter the conformation of VWF, it stabilized protein conformation once it bound the sheared molecule. Bis-ANS binding to VWF was reduced when the sheared protein was allowed to relax before dye addition. Taken together with functional data in the literature, our results suggest that shear-induced conformation changes in VWF reported by bis-ANS correlate well with the normal function of the protein under physiological/pathological fluid flow conditions. Further, this study introduces the fluorescent dye bis-ANS as a tool that may be useful in studies of shear-induced protein conformation change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interaction of alpha-hemolysin (also called alpha-toxin) from Staphylococcus aureus with mixed egg-yolk phosphatidylcholine/cholesterol liposomes has been investigated using the intrinsic tryptophan fluorescence emission (ITFE) signal. The ITFE intensity of alpha-hemolysin, which was obtained using a novel purification protocol, showed a triphasic increase on incubation with liposomes at low protein/lipid ratios. The first, rapid phase results in an increase in ITFE of 10%, which reflects rapid conformation changes in the alpha-hemolysin on association with the liposome membrane, the second phase of the ITFE increase is associated with a red shift from 334 to 339 nm in the maximum emission wavelength, suggesting the transition to a partially unfolded intermediate in the oligomerization process. The third phase of the ITFE intensity change demonstrates a temporal correlation with the appearance of SDS-stable oligomers. The results demonstrate the feasibility of identification of intermediate protein conformations in complex membrane-associated processes by manipulation of the liposomal membrane composition. (C) 1998 Academic Press.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel ( GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical degradations often induce changes in protein conformation and thus influence protein activity and protein stability in solutions. One difficulty in studying of chemical degradations on protein aqueous properties is to obtain sufficient amount of chemically degraded protein which is well characterized. Chemical degradation protocols that are often used may induce also conformation changes and aggregation of the protein. In this article we studied the effect of methionine oxidation on the conformation of recombinant human growth hormone (r-hGH). In literature it is reported that oxidation of methionine residues induces conformation changes on r-hGH. In our study, oxidation of r-hGH was performed by incubation with hydrogen peroxide under mild conditions. Mass spectrometry and chromatographic analysis revealed that oxidation with hydrogen peroxide resulted in more than 90% of oxidized r-hGH. By extensive spectroscopic characterizations no detectable change in conformation and aggregation of r-hGH after oxidation was found. In conclusion, mild oxidation conditions led to selective oxidation of the two more accessible methionine residues of r-hGH (Met(14) and Met(125)) and did not results in any conformation change of the protein. These findings prove that oxidation of human growth hormone does not influence protein conformation and demonstrate the importance of employing mild conditions during production of oxidized protein. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:110-122, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZusammenfassungDie ATP-Synthase koppelt im Energiestoffwechsel der Zellen den Protonentransport über die biologische Membran mit der Synthese des energiespeichernden Moleküls ATP aus ADP und Phosphat. ATP-Synthasen bestehen aus 2 Subkomplexen, wobei der katalytische F1-Teil von der membranständigen Domäne abgelöst werden kann und nur zur ATP-Hydrolyse fähig ist. Der hochkooperative Reaktionsmechanismus der dreizentrigen ATP-Synthasen ist weitgehend unklar.Im Rahmen dieser Arbeit wurde der ATP-Synthasekomplex und ihr wasserlösliches katalytisches F1-Fragment aus Micrococcus luteus in präparativem Maßstab mittels chromatographischer Trennmethoden isoliert. Die Überprüfung der Funktionalität beider Enzyme erfolgte mit enzymatischen Methoden. Durch zeitaufgelöste Röntgenkleinwinkelstreuung wurde die Strukturdynamik der arbeitenden ATP-Synthase und ihres F1-Fragmentes aus Micrococcus luteus im Laufe des ATP-Hydrolysezyklus untersucht. Diese Methode diente zum Nachweis weiträumiger Konformationsänderungen innerhalb der arbeitenden Enzyme unter nativen physiologischen Bedingungen. Die zeitaufgelösten Streuexperimente fanden an der ESRF (Europäische Synchrotronstrahlungsquelle) in Grenoble (F) statt. Dort wurden für beide Enzyme im Laufe des ATP-Hydrolysezykus molekulare Bewegungen nachgewiesen. Als Referenz zu den zeitaufgelösten Messungen dienten statische Messungen zur Strukturuntersuchung der Proteine am schwächeren DESY. Anhand dieser Strukturdaten wurden Molekülmodelle der F1-ATPase und ATP-Synthase aus Micrococcus luteus konstruiert. Das Molekülmodell der F1-ATPase war die Grundlage zur Modellierung einzelner Teilschritte des ATP-Hydrolysezyklus bei 20°C. Die experimentellen Daten wurden mit einer Kippbewegung der membranseitigen Domäne der katalytischen b-Untereinheiten der F1-ATPase während des ATP-Hydrolysezyklus interpretiert.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of a multisubunit protein (immunoglobulin light chain) was solved in three crystal forms, differing only in the solvent of crystallization. The three structures were obtained at high ionic strength and low pH, high ionic strength and high pH, and low ionic strength and neutral pH. The three resulting "snapshots" of possible structures show that their variable-domain interactions differ, reflecting their stabilities under specific solvent conditions. In the three crystal forms, the variable domains had different rotational and translational relationships, whereas no alteration of the constant domains was found. The critical residues involved in the observed effect of the solvent are tryptophans and histidines located between the two variable domains in the dimeric structure. Tryptophan residues are commonly found in interfaces between proteins and their subunits, and histidines have been implicated in pH-dependent conformation changes. The quaternary structure observed for a multisubunit protein or protein complex in a crystal may be influenced by the interactions of the constituents within the molecule or complex and/or by crystal packing interactions. The comparison of buried surface areas and hydrogen bonds between the domains forming the molecule and between the molecules forming the crystals suggest that, for this system, the interactions within the molecule are most likely the determining factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurement of the temperature-dependence of thrombin-catalyzed cleavage of the Arg(155)-Ser(156) and Arg(284)-Thr(285) peptide bonds in prothrombin and prothrombin-derived substrates has yielded Arrhenius parameters that are far too large for classical mechanistic interpretation in terms of a simple hydrolytic reaction. Such a difference from the kinetic behavior exhibited in trypsin- and chymotrypsin-catalyzed proteolysis of peptide bonds is attributed to contributions by enzyme exosite interactions as well as enzyme conformational equilibria to the magnitudes of the experimentally determined Arrhenius parameters. Although the pre-exponential factor and the energy of activation deduced from the temperature-dependence of rate constants for proteolysis by thrombin cannot be accorded the usual mechanistic significance, their evaluation serves a valuable role by highlighting the existence of contributions other than those emanating from simple peptide hydrolysis to the kinetics of proteolysis by thrombin and presumably other enzymes of the blood coagulation system. (C) 2004 Elsevier B.V. All rights reserved.