953 resultados para Configuration space
Resumo:
An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.
Resumo:
The scalar form factor describes modifications induced by the pion over the quark condensate. Assuming that representations produced by chiral perturbation theory can be pushed to high values of negative-t, a region in configuration space is reached (r < R similar to 0.5 fm) where the form factor changes sign, indicating that the condensate has turned into empty space. A simple model for the pion incorporates this feature into density functions. When supplemented by scalar-meson excitations, it yields predictions close to empirical values for the mean square radius (< r(2)>(pi)(S) = 0.59 fm(2)) and for one of the low energy constants ((l) over bar (4) = 4.3), with no adjusted parameters.
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]
Resumo:
In this paper, we determine the lower central and derived series for the braid groups of the sphere. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is important in its own right. The braid groups of the 2-sphere S(2) were studied by Fadell, Van Buskirk and Gillette during the 1960s, and are of particular interest due to the fact that they have torsion elements (which were characterised by Murasugi). We first prove that for all n epsilon N, the lower central series of the n-string braid group B(n)(S(2)) is constant from the commutator subgroup onwards. We obtain a presentation of Gamma(2)(Bn(S(2))), from which we observe that Gamma(2)(B(4)(S(2))) is a semi-direct product of the quaternion group Q(8) of order 8 by a free group F(2) of rank 2. As for the derived series of Bn(S(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group Bn(S(2)) being finite and soluble for n <= 3, the critical case is n = 4 for which the derived subgroup is the above semi-direct product Q(8) (sic) F(2). By proving a general result concerning the structure of the derived subgroup of a semi-direct product, we are able to determine completely the derived series of B(4)(S(2)) which from (B(4)(S(2)))(4) onwards coincides with that of the free group of rank 2, as well as its successive derived series quotients.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Per a determinar la dinàmica espai-temporal completa d’un sistema quàntic tridimensional de N partícules cal integrar l’equació d’Schrödinger en 3N dimensions. La capacitat dels ordinadors actuals permet fer-ho com a molt en 3 dimensions. Amb l’objectiu de disminuir el temps de càlcul necessari per a integrar l’equació d’Schrödinger multidimensional, es realitzen usualment una sèrie d’aproximacions, com l’aproximació de Born–Oppenheimer o la de camp mig. En general, el preu que es paga en realitzar aquestes aproximacions és la pèrdua de les correlacions quàntiques (o entrellaçament). Per tant, és necessari desenvolupar mètodes numèrics que permetin integrar i estudiar la dinàmica de sistemes mesoscòpics (sistemes d’entre tres i unes deu partícules) i en els que es tinguin en compte, encara que sigui de forma aproximada, les correlacions quàntiques entre partícules. Recentment, en el context de la propagació d’electrons per efecte túnel en materials semiconductors, X. Oriols ha desenvolupat un nou mètode [Phys. Rev. Lett. 98, 066803 (2007)] per al tractament de les correlacions quàntiques en sistemes mesoscòpics. Aquesta nova proposta es fonamenta en la formulació de la mecànica quàntica de de Broglie– Bohm. Així, volem fer notar que l’enfoc del problema que realitza X. Oriols i que pretenem aquí seguir no es realitza a fi de comptar amb una eina interpretativa, sinó per a obtenir una eina de càlcul numèric amb la que integrar de manera més eficient l’equació d’Schrödinger corresponent a sistemes quàntics de poques partícules. En el marc del present projecte de tesi doctoral es pretén estendre els algorismes desenvolupats per X. Oriols a sistemes quàntics constituïts tant per fermions com per bosons, i aplicar aquests algorismes a diferents sistemes quàntics mesoscòpics on les correlacions quàntiques juguen un paper important. De forma específica, els problemes a estudiar són els següents: (i) Fotoionització de l’àtom d’heli i de l’àtom de liti mitjançant un làser intens. (ii) Estudi de la relació entre la formulació de X. Oriols amb la aproximació de Born–Oppenheimer. (iii) Estudi de les correlacions quàntiques en sistemes bi- i tripartits en l’espai de configuració de les partícules mitjançant la formulació de de Broglie–Bohm.
Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots.
Resumo:
The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.
Resumo:
We present here a nonbiased probabilistic method that allows us to consistently analyze knottedness of linear random walks with up to several hundred noncorrelated steps. The method consists of analyzing the spectrum of knots formed by multiple closures of the same open walk through random points on a sphere enclosing the walk. Knottedness of individual "frozen" configurations of linear chains is therefore defined by a characteristic spectrum of realizable knots. We show that in the great majority of cases this method clearly defines the dominant knot type of a walk, i.e., the strongest component of the spectrum. In such cases, direct end-to-end closure creates a knot that usually coincides with the knot type that dominates the random closure spectrum. Interestingly, in a very small proportion of linear random walks, the knot type is not clearly defined. Such walks can be considered as residing in a border zone of the configuration space of two or more knot types. We also characterize the scaling behavior of linear random knots.
Resumo:
We present an alternative approach to the usual treatments of singular Lagrangians. It is based on a Hamiltonian regularization scheme inspired on the coisotropic embedding of presymplectic systems. A Lagrangian regularization of a singular Lagrangian is a regular Lagrangian defined on an extended velocity phase space that reproduces the original theory when restricted to the initial configuration space. A Lagrangian regularization does not always exists, but a family of singular Lagrangians is studied for which such a regularization can be described explicitly. These regularizations turn out to be essentially unique and provide an alternative setting to quantize the corresponding physical systems. These ideas can be applied both in classical mechanics and field theories. Several examples are discussed in detail. 1995 American Institute of Physics.
Resumo:
This report addresses the problem of acquiring objects using articulated robotic hands. Standard grasps are used to make the problem tractable, and a technique is developed for generalizing these standard grasps to increase their flexibility to variations in the problem geometry. A generalized grasp description is applied to a new problem situation using a parallel search through hand configuration space, and the result of this operation is a global overview of the space of good solutions. The techniques presented in this report have been implemented, and the results are verified using the Salisbury three-finger robotic hand.
Resumo:
This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications.
Resumo:
We revisit the problem of an otherwise classical particle immersed in the zero-point radiation field, with the purpose of tracing the origin of the nonlocality characteristic of Schrodinger`s equation. The Fokker-Planck-type equation in the particles phase-space leads to an infinite hierarchy of equations in configuration space. In the radiationless limit the first two equations decouple from the rest. The first is the continuity equation: the second one, for the particle flux, contains a nonlocal term due to the momentum fluctuations impressed by the field. These equations are shown to lead to Schrodinger`s equation. Nonlocality (obtained here for the one-particle system) appears thus as a property of the description, not of Nature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
In this paper, we determine the lower central and derived series for the braid groups of the projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is interesting in its own right. The n-string braid groups B(n)(RP(2)) of the projective plane RP(2) were originally studied by Van Buskirk during the 1960s. and are of particular interest due to the fact that they have torsion. The group B(1)(RP(2)) (resp. B(2)(RP(2))) is isomorphic to the cyclic group Z(2) of order 2 (resp. the generalised quaternion group of order 16) and hence their lower central and derived series are known. If n > 2, we first prove that the lower central series of B(n)(RP(2)) is constant from the commutator subgroup onwards. We observe that Gamma(2)(B(3)(RP(2))) is isomorphic to (F(3) X Q(8)) X Z(3), where F(k) denotes the free group of rank k, and Q(8) denotes the quaternion group of order 8, and that Gamma(2)(B(4)(RP(2))) is an extension of an index 2 subgroup K of P(4)(RP(2)) by Z(2) circle plus Z(2). As for the derived series of B(n)(RP(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group B(n)(RP(2)) being finite and soluble for n <= 2, the critical cases are n = 3, 4. We are able to determine completely the derived series of B(3)(RP(2)). The subgroups (B(3)(RP(2)))((1)), (B(3)(RP(2)))((2)) and (B(3)(RP(2)))((3)) are isomorphic respectively to (F(3) x Q(8)) x Z(3), F(3) X Q(8) and F(9) X Z(2), and we compute the derived series quotients of these groups. From (B(3)(RP(2)))((4)) onwards, the derived series of B(3)(RP(2)), as well as its successive derived series quotients, coincide with those of F(9). We analyse the derived series of B(4)(RP(2)) and its quotients up to (B(4)(RP(2)))((4)), and we show that (B(4)(RP(2)))((4)) is a semi-direct product of F(129) by F(17). Finally, we give a presentation of Gamma(2)(B(n)(RP(2))). (C) 2011 Elsevier Inc. All rights reserved.