918 resultados para Cone location
Resumo:
Purpose To evaluate the influence of cone location and corneal cylinder on RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Methods In this prospective study, 156 eyes from 134 patients were enrolled. Complete ophthalmologic examination including manifest refraction, Best spectacle visual acuity (BSCVA), slit-lamp biomicroscopy was performed and corneal topography analysis was done. According to the cone location on the topographic map, the patients were divided into central and paracentral cone groups. Trial RGP lenses were selected based on the flat Sim K readings and a ‘three-point touch’ fitting approach was used. Over contact lens refraction was performed, residual astigmatism (RA) was measured and best-corrected RGP visual acuities (RGPVA) were recorded. Results The mean age (±SD) was 22.1 ± 5.3 years. 76 eyes (48.6%) had central and 80 eyes (51.4%) had paracentral cone. Prior to RGP lenses fitting mean (±SD) subjective refraction spherical equivalent (SRSE), subjective refraction astigmatism (SRAST) and BSCVA (logMAR) were −5.04 ± 2.27 D, −3.51 ± 1.68 D and 0.34 ± 0.14, respectively. There were statistically significant differences between central and paracentral cone groups in mean values of SRSE, SRAST, flat meridian (Sim K1), steep meridian (Sim K2), mean K and corneal cylinder (p-values < 0.05). Comparison of BSCVA to RGPVA shows that vision has improved 0.3 logMAR by RGP lenses (p < 0.0001). Mean (±SD) RA was −0.72 ± 0.39 D. There were no statistically significant differences between RGPVAs and RAs of central and paracentral cone groups (p = 0.22) and (p = 0.42), respectively. Pearson's correlation analysis shows that there is a statistically significant relationship between corneal cylinder and BSCVA and RGPVA, However, the relationship between corneal cylinder and residual astigmatism was not significant. Conclusions Cone location has no effect on the RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Corneal cylinder and Sim K values influence RGP-corrected visual acuities but do not influence residual astigmatism.
Resumo:
PURPOSE To extend the capabilities of the Cone Location and Magnitude Index algorithm to include a combination of topographic information from the anterior and posterior corneal surfaces and corneal thickness measurements to further improve our ability to correctly identify keratoconus using this new index: ConeLocationMagnitudeIndex_X. DESIGN Retrospective case-control study. METHODS Three independent data sets were analyzed: 1 development and 2 validation. The AnteriorCornealPower index was calculated to stratify the keratoconus data from mild to severe. The ConeLocationMagnitudeIndex algorithm was applied to all tomography data collected using a dual Scheimpflug-Placido-based tomographer. The ConeLocationMagnitudeIndex_X formula, resulting from analysis of the Development set, was used to determine the logistic regression model that best separates keratoconus from normal and was applied to all data sets to calculate PercentProbabilityKeratoconus_X. The sensitivity/specificity of PercentProbabilityKeratoconus_X was compared with the original PercentProbabilityKeratoconus, which only uses anterior axial data. RESULTS The AnteriorCornealPower severity distribution for the combined data sets are 136 mild, 12 moderate, and 7 severe. The logistic regression model generated for ConeLocationMagnitudeIndex_X produces complete separation for the Development set. Validation Set 1 has 1 false-negative and Validation Set 2 has 1 false-positive. The overall sensitivity/specificity results for the logistic model produced using the ConeLocationMagnitudeIndex_X algorithm are 99.4% and 99.6%, respectively. The overall sensitivity/specificity results for using the original ConeLocationMagnitudeIndex algorithm are 89.2% and 98.8%, respectively. CONCLUSIONS ConeLocationMagnitudeIndex_X provides a robust index that can detect the presence or absence of a keratoconic pattern in corneal tomography maps with improved sensitivity/specificity from the original anterior surface-only ConeLocationMagnitudeIndex algorithm.
Resumo:
Purpose: To examine between eye differences in corneal higher order aberrations and topographical characteristics in a range of refractive error groups. Methods: One hundred and seventy subjects were recruited including; 50 emmetropic isometropes, 48 myopic isometropes (spherical equivalent anisometropia ≤ 0.75 D), 50 myopic anisometropes (spherical equivalent anisometropia ≥ 1.00 D) and 22 keratoconics. The corneal topography of each eye was captured using the E300 videokeratoscope (Medmont, Victoria, Australia) and analyzed using custom written software. All left eye data were rotated about the vertical midline to account for enantiomorphism. Corneal height data were used to calculate the corneal wavefront error using a ray tracing procedure and fit with Zernike polynomials (up to and including the eighth radial order). The wavefront was centred on the line of sight by using the pupil offset value from the pupil detection function in the videokeratoscope. Refractive power maps were analysed to assess corneal sphero-cylindrical power vectors. Differences between the more myopic (or more advanced eye for keratoconics) and the less myopic (advanced) eye were examined. Results: Over a 6 mm diameter, the cornea of the more myopic eye was significantly steeper (refractive power vector M) compared to the fellow eye in both anisometropes (0.10 ± 0.27 D steeper, p = 0.01) and keratoconics (2.54 ± 2.32 D steeper, p < 0.001) while no significant interocular difference was observed for isometropic emmetropes (-0.03 ± 0.32 D) or isometropic myopes (0.02 ± 0.30 D) (both p > 0.05). In keratoconic eyes, the between eye difference in corneal refractive power was greatest inferiorly (associated with cone location). Similarly, in myopic anisometropes, the more myopic eye displayed a central region of significant inferior corneal steepening (0.15 ± 0.42 D steeper) relative to the fellow eye (p = 0.01). Significant interocular differences in higher order aberrations were only observed in the keratoconic group for; vertical trefoil C(3,-3), horizontal coma C(3,1) secondary astigmatism along 45 C(4, -2) (p < 0.05) and vertical coma C(3,-1) (p < 0.001). The interocular difference in vertical pupil decentration (relative to the corneal vertex normal) increased with between eye asymmetry in refraction (isometropia 0.00 ± 0.09, anisometropia 0.03 ± 0.15 and keratoconus 0.08 ± 0.16 mm) as did the interocular difference in corneal vertical coma C (3,-1) (isometropia -0.006 ± 0.142, anisometropia -0.037 ± 0.195 and keratoconus -1.243 ± 0.936 μm) but only reached statistical significance for pair-wise comparisons between the isometropic and keratoconic groups. Conclusions: There is a high degree of corneal symmetry between the fellow eyes of myopic and emmetropic isometropes. Interocular differences in corneal topography and higher order aberrations are more apparent in myopic anisometropes and keratoconics due to regional (primarily inferior) differences in topography and between eye differences in vertical pupil decentration relative to the corneal vertex normal. Interocular asymmetries in corneal optics appear to be associated with anisometropic refractive development.
Resumo:
Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.
Resumo:
To assess retrospectively the frequency and location of mandibular lingual foramina and their bony canals with limited cone-beam computed tomography.
Resumo:
INTRODUCTION The mental foramen (MF) is an important landmark in dentistry. Knowledge of its position is central to perform block anesthesia of the mental nerve or to avoid nerve damage during surgical procedures in the premolar area of the mandible. The present radiographic study aimed at evaluating the location and dimension of the MF and measuring distances to neighboring structures by using limited cone-beam computed tomography (CBCT). METHODS Sagittal, axial, and coronal CBCT images of 142 patients (26 bilateral and 116 unilateral cases) were retrospectively screened to determine the location of the MF with respect to adjacent teeth and to take linear measurements of the size of the MF and its distances to the upper and lower borders of the mandible. In addition, the course and angulation of the mental canal exiting the MF were assessed. RESULTS The majority of MF (56%) were located apically between the 2 premolars, and another 35.7% of MF were positioned below the second premolar. On average, the MF was localized 5.0 mm from the closest root of the adjacent tooth (range, 0.3-9.8 mm). The mean size of the MF showed a height of 3.0 mm and a length of 3.2 mm; however, individual cases showed large differences in height (1.8-5.1 mm) and in length (1.8-5.5 mm). All mental canals exiting the MF demonstrated an upward course in the coronal plane, with 70.1% of the mental canal presenting an anterior loop (AL) in the axial view. The mean extension of AL in cases with an AL was 2.3 mm. CONCLUSIONS This study is consistent with previous radiographic studies regarding size and location of MF and distances between MF and adjacent anatomic structures. The assessed bilateral cases showed a high intraindividual concordance for certain features when comparing right and left sides.
Resumo:
OBJECTIVES To evaluate the location and morphologic characteristics of supernumerary teeth and to assess the frequency and extent of root resorption of adjacent teeth using cone beam computed tomography (CBCT). MATERIALS AND METHODS CBCT scans of 82 patients with supernumerary teeth in the maxilla and mandible were evaluated by two orthodontists independently. Data regarding the type, shape, and three-dimensional (3D) location of the supernumeraries including the frequency and extent of root resorption of adjacent teeth were recorded and evaluated for possible associations. RESULTS The study comprised a total of 101 supernumerary teeth. Most of the patients (80.5 per cent) exhibited one single supernumerary tooth, while 15.8 per cent had two and 3.7 per cent had three supernumeraries. Males were affected more than females with a ratio of 1.65:1. Mesiodentes were the most frequently diagnosed type of supernumerary teeth (48.52 per cent), followed by supernumerary premolars (23.76 per cent) and lateral incisors (18.81 per cent). Supernumeraries were most commonly conical in shape (42.6 per cent) with a normal or inclined vertical position (61.4 per cent). Root resorption of adjacent teeth was detected for 22.8 per cent of the supernumerary teeth, most frequently for supernumerary premolars. There was a significant association between root resorption of adjacent teeth and type and shape of tooth. Interrater agreement for the measurements performed showed kappa values ranging from 0.55 to 1 with a kappa value of 1 for type and shape of the supernumerary teeth. CONCLUSIONS CBCT provides 3D information about location and shape of supernumerary teeth as well as prevalence and degree of root resorption of neighbouring teeth with moderate to high interrater correlation.
Resumo:
In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.
Resumo:
Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.
Resumo:
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.
Resumo:
The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K2HPO4 solutions were measured. The relationship between CT number and K2HPO4 concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results The relationship between K2HPO4 concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.
Resumo:
Objectives The aim of this study was to determine the prevalence of apical periodontitis (AP) detected in cone beam CT (CBCT) images from a database. Methods CBCT images of 300 Brazilian patients were assessed. AP images were measured in three dimensions. Age, gender, number and location of total teeth in each patient were considered. AP location was considered according to tooth groups. The extent of AP was determined by the largest diameter in any of the three dimensions. Percentages and the X2 test were used for statistical analysis. Results AP was found in 51.4% of the patients and in 3.4% of the teeth. Higher prevalence of AP was found in 60- to 69-year-olds (73.1%) and in mandibular molars (5.9%) (p < 0.05). Inadequate endodontic treatment presented higher prevalence of AP (78.1%). Conclusions AP can be frequently found in CBCT examinations. The presence of AP has a significant association with patients' age, and tooth type and condition. CBCT databases are useful for cross-sectional studies about AP prevalence in a population.
Resumo:
Foreign bodies are common findings in the maxillofacial region, most commonly the result of accidents and physical aggression. Among the objects frequently found in the orofacial tissues are fragments of metal, plastic, wood, and glass. Visualization and exact identification of the location of these objects can be challenging but is of major importance prior to surgical removal. The present case report describes the use of cone beam computed tomography to locate, visualize, and surgically remove glass particles in the oral cavity.