971 resultados para Conditioned reward
Resumo:
The conditioned rewarding effects of novelty compete with those of cocaine for control over choice behavior using a place conditioning task. The purpose of the present study was to use multiple doses of cocaine to determine the extent of this competition and to determine whether novelty’s impact on cocaine reward was maintained over an abstinence period. In Experiment 1, rats were conditioned with cocaine (7.5, 20, or 30 mg/kg ip) to prefer one side of an unbiased place conditioning apparatus relative to the other. In a subsequent phase, all rats received alternating daily confinements to the previously cocaine paired and unpaired sides of the apparatus. During this phase, half the rats had access to a novel object on their initially unpaired side; the remaining rats did not receive objects. The ability of novelty to compete with cocaine in a drug free and cocaine challenge test was sensitive to cocaine dose. In Experiment 2, a place preference was established with 10 mg/kg cocaine and testing occurred after 1, 14, or 28 day retention intervals. Findings indicate that choice behaviors mediated by cocaine conditioning are reduced with the passing of time. Taken together, competition between cocaine and novelty conditioned rewards are sensitive to drug dose and retention interval.
Resumo:
The brain vesicular monoamine transporter (VMAT2) pumps monoamine neurotransmitters and Parkinsonism-inducing dopamine neurotoxins such as 1-methyl-4-phenyl-phenypyridinium (MPP+) from neuronal cytoplasm into synaptic vesicles, from which amphetamines cause their release. Amphetamines and MPP+ each also act at nonvesicular sites, providing current uncertainties about the contributions of vesicular actions to their in vivo effects. To assess vesicular contributions to amphetamine-induced locomotion, amphetamine-induced reward, and sequestration and resistance to dopaminergic neurotoxins, we have constructed transgenic VMAT2 knockout mice. Heterozygous VMAT2 knockouts are viable into adult life and display VMAT2 levels one-half that of wild-type values, accompanied by smaller changes in monoaminergic markers, heart rate, and blood pressure. Weight gain, fertility, habituation, passive avoidance, and locomotor activities are similar to wild-type littermates. In these heterozygotes, amphetamine produces enhanced locomotion but diminished behavioral reward, as measured by conditioned place preference. Administration of the MPP+ precursor N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to heterozygotes produces more than twice the dopamine cell losses found in wild-type mice. These mice provide novel information about the contributions of synaptic vesicular actions of monoaminergic drugs and neurotoxins and suggest that intact synaptic vesicle function may contribute more to amphetamine-conditioned reward than to amphetamine-induced locomotion.
Resumo:
Les problèmes de toxicomanie sont très communs chez les schizophrènes. L’administration chronique d’antipsychotiques pourrait être impliquée dans cette cooccurrence en induisant une hypersensibilisation du système dopaminergique. Précédemment, nous avons démontré chez le rat qu’un traitement continu (via une mini-pompe osmotique sous-cutanée), et non pas intermittent (via des injections journalières sous-cutanées), avec l’halopéridol a augmenté la capacité de l’amphétamine à potentialiser un comportement de recherche de récompense. Dans cette étude, nous avons étudié les effets d’un antipsychotique atypique soit l’olanzapine comparé à l’halopéridol. Un traitement continu avec l’halopéridol, et non pas l’olanzapine, a augmenté la capacité de l’amphétamine de potentialiser la poursuite d’une récompense conditionnée (lumière/son préalablement associés à l’eau). De plus, un traitement continu avec l’halopéridol a augmenté l’induction par l’amphétamine de l’activité locomotrice et l’expression d’ARNm pour le c-fos (marqueur fonctionnel d’activité cellulaire) dans le caudé-putamen. Donc, un traitement continu avec un antipsychotique typique, et non pas atypique, a augmenté les caractéristiques motivationnelles attribuées à un stimulus neutre. Ceci est potentiellement lié à au développement d’un état de sensibilisation comportementale aux effets de l’amphétamine et à une augmentation de la capacité de l’amphétamine de susciter la modulation de l’activité du caudé-putamen. Ainsi, un antipsychotique typique tel que l’halopéridol semble modifier les circuits de la récompense de façon à contribuer à des comportements caractérisés par une recherche et une consommation de drogues d’abus alors qu’un antipsychotique atypique tel que l’olanzapine aurait moins tendance à le faire. Nous suggérons que les antipsychotiques atypiques pourraient être une meilleure option chez les patients schizophrènes à risque d’avoir un trouble de consommation de drogues d’abus ou de toxicomanie.
Resumo:
Beaucoup de personnes consomment des drogues d’abus de façon récréative ou expérimentale dans leur vie, mais peu d’entre elles développent une toxicomanie. Nous avons exploré, chez le rat, deux facteurs impliqués dans la transition vers la toxicomanie, soit la vitesse à laquelle la drogue parvient au cerveau et le fait d’être sous traitement antipsychotique. Dans une première étude, notre objectif était de déterminer si augmenter la vitesse de livraison de la cocaïne (0.5 mg/kg) par auto-administration intraveineuse (i.v.; livrée en 5 secondes dans un groupe versus 90 secondes dans l’autre) mènerait à une plus grande consommation de celle-ci lors d’un accès prolongé (6 h/j versus 1 h/j), et à une plus grande motivation à obtenir la drogue telle que mesurée sous un ratio de renforcement progressif à une vitesse différente (10 secondes). Nous avons trouvé que le groupe 5 s consommait plus de cocaïne que le groupe 90 s en accès prolongé, mais aussi en accès limité. Cependant, la motivation des deux groupes était la même à la vitesse de 10 s, ainsi qu’à leurs vitesses initiales. Nous pensons que ceci peut être dû à une forme de plasticité du système méso-cortico-limbique survenue suite à l’auto-administration en accès prolongé en conjonction avec l’augmentation de consommation, chez les deux groupes, rendant impossible une distinction de leur motivation. Dans une deuxième série d’études nous avons émis l’hypothèse que l’antipsychotique typique, halopéridol (HAL, 0.5 mg/kg/j), et non l’atypique, aripiprazole (ARI, 1 mg/kg/j), un modulateur dopaminergique, induirait une augmentation de la poursuite de récompense conditionnée (RC) et de la locomotion (LOCO) en réponse à l’amphétamine (AMPH). Cependant, nous avons trouvé une augmentation chez le groupe HAL, mais non ARI, de la réponse RC, trois semaines, mais non une semaine post traitement, ainsi qu’une augmentation de la LOCO, chez le groupe HAL, mais non ARI, une semaine mais non trois semaines post traitement. L’incohérence des résultats entre les deux tests (RC et LOCO) rend leur interprétation difficile. Ces études restent à être explorées d’avantage afin de pouvoir en tirer des conclusions plus éclairées quant à l’impact de la vitesse d’administration de la cocaïne et du traitement antipsychotique sur le développement d’une toxicomanie.
Resumo:
Aims. Cocaine addiction is a chronically relapsing disorder characterized by the compulsion to seek and take the drug. Previous investigations have demonstrated that several drugs of abuse, as cocaine, can alter the levels of lipid-based signalling molecules such as the N-acylethanolamines (NAEs). In addition, NAEs levels in the brain are sensitive to cocaine self-administration and extinction training. In this context, this study aimed to investigate the effect of repeated and acute palmitoylethanolamide (PEA), an endogenous NAE, on the behavioural effects of cocaine using mouse models of conditioned reward and psychomotor activation. Methods. Using male C57BL/6J mice, the ability of repeated PEA injections (1 or 10 mg/kg i.p) to modulate the development of a conditioned place preference (CPP) and behavioural sensitization (BS) induced by cocaine (20 mg/kg i.p.) was evaluated. In addition, the expression of cocaine-induced CPP and BS after acute PEA administration was also studied. Results. PEA (1 and 10 mg/kg i.p) significantly reduced the development of cocaine-induced BS, but did not modify the acquisition of cocaine-induced CPP. Furthermore, both doses of PEA were able to reduce the expression of BS and CPP. Conclusions. Altogether, these findings show that exogenous administration of PEA attenuated psychomotor activation and impaired the expression of CPP induced by cocaine. Our results may be relevant in order to understand the role of NAEs in the development and treatment of cocaine addiction.
Resumo:
Cocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions from serotonin transporter (5-HTT) recognition, was key to its rewarding actions. We now report that knockout mice without DAT and mice without 5-HTT establish cocaine-conditioned place preferences. Each strain displays cocaine-conditioned place preference in this major mouse model for assessing drug reward, while methylphenidate-conditioned place preference is also maintained in DAT knockout mice. These results have substantial implications for understanding cocaine actions and for strategies to produce anticocaine medications.
Resumo:
Spontaneous mimicry is a marker of empathy. Conditions characterized by reduced spontaneous mimicry (e.g., autism) also display deficits in sensitivity to social rewards. We tested if spontaneous mimicry of socially rewarding stimuli (happy faces) depends on the reward value of stimuli in 32 typical participants. An evaluative conditioning paradigm was used to associate different reward values with neutral target faces. Subsequently, electromyographic activity over the Zygomaticus Major was measured whilst participants watched video clips of the faces making happy expressions. Higher Zygomaticus Major activity was found in response to happy faces conditioned with high reward versus low reward. Moreover, autistic traits in the general population modulated the extent of spontaneous mimicry of happy faces. This suggests a link between reward and spontaneous mimicry and provides a possible underlying mechanism for the reduced response to social rewards seen in autism.
Resumo:
Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that alpha/beta suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between alpha/beta suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.
Resumo:
Negative anticipatory contrast (NAC) corresponds to the suppression in consumption of a first rewarding substance (e.g., saccharin 0.15%) when it is followed daily by a second preferred substance (e.g., sucrose 32%). The NAC has been interpreted as resulting from anticipation of the impending preferred reward and its comparison with the currently available first reward [Flaherty, CF., Rowan, G.A., 1985. Anticipatory contrast: within-subjects analysis. Anim. Learn. Behav. 13, 2-5]. In this context, one should expect that devaluation of the preferred substance after the establishment of the NAC would either reduce or abolish the contrast effect. However, contrary to this prediction, the results of the present study show that the NAC is insensitive to devaluation of the second, preferred, substance. This allows one to question that interpretation. The results reported in this study support the view that the NAC effect is controlled by memory of the relative value of the first solution, which is updated daily by means of both a gustatory and/or post-ingestive comparison of the first and second solutions, and memory of past pairings. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. To further elucidate the participation of DS in emotional learning, in the present study, we investigated the effects of bilateral pretest (postraining) electrolytic DS lesions on TFC. Given the well-acknowledged role of the amygdala in emotional learning, we also examined a possible cooperation between DS and the amygdala in TFC, by using asymmetrical electrolytic lesions, consisting of a unilateral lesion of the central amygdaloid nucleus (CeA) combined to a contralateral DS lesion. The results show that pre-test bilateral DS lesions disrupt TFC responses, suggesting that DS plays a role in the expression of TFC. More importantly, rats with asymmetrical pre-training lesions were impaired in TFC, but not in CFC tasks. This result was confirmed with muscimol asymmetrical microinjections in DS and CeA, which reversibly inactivate these structures. On the other hand, similar pretest lesions as well as unilateral electrolytic lesions of CeA and DS in the same hemisphere did not affect TFC. Possible anatomical substrates underlying the observed effects are proposed. Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Diethylpropion (DEP) is a stimulant drug widely used for weight control in Brazil and other American countries. However, its effects on behavior and addiction potential are not yet well known. Data suggest that sensitization resulting from pre-exposure to psychostimulants could be a possible risk factor in subsequent drug addiction. The purpose of this investigation was to verify whether pre-exposure to DEP would sensitize rats to the motor activating effect and to the rewarding value of DEP. Two experiments were conducted. In both experiments rats were pre-exposed to DEP (20 mg/kg) or vehicle for 7 consecutive days. The acute effect of DEP (0.0, 1.0, 2.5 or 5.0 mg/kg) on motor activity (Experiment 1) and induction of Conditioned Place Preference-CPP (Experiment 2) were then measured. Results from Experiment 1 showed that 2.5 and 5.0 mg/kg DEP increased motor activity. Sensitization of this motor effect was observed. In Experiment 2, the doses of 2.5 and 5.0 mg/kg DEP induced CPP, indicating their rewarding value. However, no sensitization effect was observed. The results suggest that DEP at low doses has psychostimulant and rewarding properties. It is recommended that more effort should be dedicated to elucidating DEP abuse Potential. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Previous studies using morphine-treated dams reported a role for the rostral lateral periaqueductal gray (rIPAG) in the behavioral switching between nursing and insect hunting, likely to depend on an enhanced seeking response to the presence of an appetitive rewarding cue (i.e., the roach). To elucidate the neural mechanisms mediating such responses, in the present study, we first observed how the rIPAG influences predatory hunting in male rats. Our behavioral observations indicated that bilateral rIPAG NMDA lesions dramatically interfere with prey hunting, leaving the animal without chasing or attacking the prey, but do not seem to affect the general levels of arousal, locomotor activity and regular feeding. Next, using Phaseolus vulgaris-leucoagglutinin (PHA-L), we have reviewed the rIPAG connection pattern, and pointed out a particularly dense projection to the hypothalamic orexinergic cell group. Double labeled PHA-L and orexin sections showed an extensive overlap between PHA-L labeled fibers and orexin cells, revealing that both the medial/perifornical and lateral hypothalamic orexinergic cell groups receive a substantial innervation from the rIPAG. We have further observed that both the medial/perifornical and lateral hypothalamic orexinergic cell groups up-regulate Fos expression during prey hunting, and that rIPAG lesions blunted this Fos increase only in the lateral hypothalamic, but not in the medial/perifornical, orexinergic group, a finding supposedly associated with the lack of motivational drive to actively pursue the prey. Overall, the present results suggest that the rIPAG should exert a critical influence on reward seeking by activating the lateral hypothalamic orexinergic cell group. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purpose of our study was to assess whether prairie voles find alcohol rewarding. Prairie voles have recently become a species of interest for alcohol studies, which have traditionally used other rodent model species including several different strains of mice and rats. The prairie vole is one of only two known rodent species that readily administers high levels of unsweetened alcohol, implicating it as a potentially effective animal model for studying alcohol abuse. However, voluntary consumption does not necessarily imply that prairie voles find it rewarding. Therefore the purpose of our study was to investigate if alcohol has rewarding properties for prairie voles using three different approaches: place conditioning, flavor conditioning, and immunohistochemistry. Furthermore, we sought to characterize their reward profile and compare it to other commonly used rodent models ¿ C57BL/6 mice, DBA/2J mice, and Sprague-Dawley rats. Place and flavor conditioning are behavioral methods that rely on the learned association between a stimulus and the effects of a drug; the drug of interest in these studies is alcohol. To assess whether prairie voles will demonstrate a conditioned preference for alcohol-paired stimuli, seven place conditioning studies were run that investigated a range of different doses, individual conditioning session durations, and trial durations. Video analysis revealed no difference in the amount of time spent on the alcohol-paired floor, suggesting no conditioned place preference for alcohol. Two flavor conditioning tests were conducted to assess whether voles would demonstrate a preference for an alcohol-paired flavored saccharin solution. Voles demonstrated reduced consumption of the alcohol-paired flavored saccharin solution, regardless of dose or flavor, when alcohol administration occurred after conditioning sessions (p=<0.001). When alcohol was administered before conditioning sessions, no difference in consumption of the alcohol-paired and saline-paired flavored saccharin solutions was seen (p=0.545). Previous studies that have documented similar behavior have hypothesized that this is an example of an anticipatory contrast effect. This theory proposes that prairie voles reduce their intake of a hedonic solution (flavored saccharin solution) in anticipation of later drug administration (alcohol). However, conditioning-based behavioral methods of studying alcohol reward are highly sensitive to the parameters of the conditioned stimulus, thus it is possible that voles will not show preference for alcohol-related stimuli, even if they do find alcohol rewarding. Immunohistochemical analysis supplemented this behavioral data by allowing us to identify specific neural regions that were directly activated in response to the acute administration of alcohol. No difference in the number of activated c-Fos neurons in the Nucleus Accumbens (NAc) core or shell was seen (p=0.3364; p=0.6698) in animals that received an acute injection of alcohol or saline. There was a significant increase in the number of activated c-Fos neurons in the Paraventricular Nucleus of the Hypothalamus (PVN) in alcohol-treated animals compared to saline-treated animals (p=0.0034). There was no difference in the pixel count of activated c-Fos neurons or in the % area activated in the Arcuate Nucleus between alcohol and saline-treated animals (p=0.4523; p=0.3304). In conclusion, the place conditioning studies that were conducted in this thesis suggest that prairie voles do not demonstrate preference or aversion towards alcohol-paired stimuli. The flavor conditioning studies suggest that prairie voles do not demonstrate aversion but rather avoidance of the alcohol-paired flavor in anticipation of future alcohol administration. The preliminary immunohistochemical data collected is inconclusive but cannot rule out the possibility of neuronal activation patterns indicative of reward. Taken together, our data indicate that prairie voles hav
Resumo:
Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.
Resumo:
Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy that either DAT or SERT might be able to mediate cocaine reward in the other's absence. To test this hypothesis, we examined double knockout mice with deletions of one or both copies of both the DAT and SERT genes. These mice display viability, weight gain, histologic features, neurochemical parameters, and baseline behavioral features that allow tests of cocaine influences. Mice with even a single wild-type DAT gene copy and no SERT copies retain cocaine reward/reinforcement, as measured by conditioned place-preference testing. However, mice with no DAT and either no or one SERT gene copy display no preference for places where they have previously received cocaine. The serotonin dependence of cocaine reward in DAT knockout mice is thus confirmed by the elimination of cocaine place preference in DAT/SERT double knockout mice. These results provide insights into the brain molecular targets necessary for cocaine reward in knockout mice that develop in their absence and suggest novel strategies for anticocaine medication development.