893 resultados para Conditioned medium
Resumo:
Primary sensory neurons which innervate neuromuscular spindles in the chicken are calbindin-immunoreactive. The influence exerted by developing skeletal muscle on the expression of calbindin immunoreactivity by subpopulations of dorsal root ganglion (DRG) cells in the chick embryo was tested in vitro in coculture with myoblasts, in conditioned medium (CM) prepared from myoblasts and in control cultures of DRG cells alone. Control cultures of DRG cells grown at the 6th embryonic day (E6) did not show any calbindin-immunostained ganglion cell. In coculture of myoblasts previously grown for 14 days, about 3% of calbindin-immunoreactive ganglion cells were detected while about 1% were observed in some cultures grown in CM. Fibroblasts from various sources were devoid of effect. Skin or kidney cells were more active than myoblasts to initiate calbindin expression by subpopulations of DRG cells in coculture or, to a lesser degree, in CM. The results suggest that cellular factors would rather induce calbindin expression in certain sensory neurons than ensure a selective neuronal survival.
Resumo:
Cytokines are a heterogeneous group of molecules that have been associated with several functions in the nervous system, such as survival and differentiation of neuronal and glial cells. In the present study, we demonstrated that conditioned medium from spleen cells activated with concanavalin A increased neuritogenesis and survival of retinal cells, as measured by biochemical and morphological criteria. Our data showed that conditioned medium induced a five-fold increase in the amount of protein after 120 h in vitro. This effect was not inhibited by the blockade of voltage-dependent L-type calcium channels with 5.0 µM nifedipine. However, the use of an intracellular calcium chelator (15.0 µM BAPTA-AM) inhibited this effect. Our results support the idea that factors secreted by activated lymphocytes, such as cytokines, can modulate the maintenance and the differentiation of rat retinal cells in vitro, indicating a possible role of these molecules in the development of retinal cells, as well as in its protection against pathological conditions
Resumo:
Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM) for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group) in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC). These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.
Resumo:
Mesenchymal stem cells (MSCs) secrete a variety of cytokines and growth factors in addition to self-renewal and multiple forms of differentiation. Some of these secreted bioactive factors could improve meiotic maturation in vitro and subsequent embryo developmental potential. The aim of the present study was to determine whether in vitro maturation (IVM) of mouse oocyte with or without cumulus cells could be improved by contact with conditioned medium (CM) of MSCs as well as the efficiency of CM to support follicular growth and oocyte maturation in the ovarian organ of mice cultured on soft agar. The developmental potential of matured oocyte was assessed by blastocyst formation after in vitro fertilization (IVF). Germinal vesicle stage oocytes with or without cumulus cells were subjected to IVM in either CM, Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM) or human tubal fluid (HTF). Approximately 120 oocytes were studied for each medium. CM produced a higher maturation rate (91.2%) than DMEM (54.7%), α-MEM (63.5%) and HTF (27.1%). Moreover, CM improved embryo development to blastocyst stage significantly more than DMEM and HTF (85 vs 7% and 41.7%, respectively) but there was no significant difference compared with α-MEM (85 vs 80.3%). The behavior of cortical granules of IVM oocytes cultured in CM revealed cytoplasmic maturation. Moreover, CM also supported preantral follicles growth well in organotypic culture on soft agar resulting in the maturation of 60% of them to developmentally competent oocytes. The production of estrogen progressively increased approximately 1-fold every other day during organ culture, while a dramatic 10-fold increase in progesterone was observed 17 h after human chorionic gonadotropin stimulus at the end of culture. Thus, CM is an effective medium for preantral follicle growth, oocyte maturation, and sequential embryo development.
Resumo:
Mesenchymal stem cells (MSCs) have been reported to secrete a variety of cytokines and growth factors acting as trophic suppliers, but little is known regarding the effects of conditioned medium (CM) of MSCs isolated from femurs and tibias of mouse on the artificial activation of mouse oocytes and on the developmental competence of the parthenotes. In the current study, we investigated the effect of CM on the events of mouse oocyte activation, namely oscillations of cytosolic calcium concentration ([Ca²+]i), meiosis resumption, pronucleus formation, and parthenogenetic development. The surface markers of MSCs were identified with a fluorescence-activated cell sorter. The dynamic changes of the spindle and formation of pronuclei were examined by laser-scanning confocal microscopy. Exposure of cumulus-oocyte complexes to CM for 40 min was optimal for inducing oocyte parthenogenetic activation and evoking [Ca²+]i oscillations similar to those evoked by sperm (95 vs 100%; P > 0.05). Parthenogenetically activated oocytes immediately treated with 7.5 µg/mL cytochalasin B (CB), which inhibited spindle rotation and second polar body extrusion, were mostly diploid (93 vs 6%, P < 0.01) while CB-untreated oocytes were mostly haploid (5 vs 83%, P < 0.01). Consequently, the blastocyst rate was higher in the CB-treated than in the CB-untreated oocytes. There was no significant difference in developmental rate between oocytes activated with CM and 7% ethanol (62 vs 62%, P > 0.05), but the developmental competence of the fertilized oocytes was superior to that of the parthenotes (88 vs 62%, P < 0.05). The present results demonstrate that CM can effectively activate mouse oocytes, as judged by the generation of [Ca²+]i oscillations, completion of meiosis and parthenogenetic development.
Resumo:
Chagas' myocardiopathy, caused by the intracellular protozoan Trypanosoma cruzi, is characterized by microvascular alterations, heart failure and arrhythmias. Ischemia and arrythmogenesis have been attributed to proteins shed by the parasite, although this has not been fully demonstrated. The aim of the present investigation was to study the effect of substances shed by T. cruzi on ischemia/reperfusion-induced arrhythmias. We performed a triple ischemia-reperfusion (I/R) protocol whereby the isolated beating rat hearts were perfused with either Vero-control or Vero T. cruzi-infected conditioned medium during the different stages of ischemia and subsequently reperfused with Tyrode's solution. ECG and heart rate were recorded during the entire experiment. We observed that triple I/R-induced bradycardia was associated with the generation of auricular-ventricular blockade during ischemia and non-sustained nodal and ventricular tachycardia during reperfusion. Interestingly, perfusion with Vero-infected medium produced a delay in the reperfusion-induced recovery of heart rate, increased the frequency of tachycardic events and induced ventricular fibrillation. These results suggest that the presence of parasite-shed substances in conditioned media enhances the arrhythmogenic effects that occur during the I/R protocol.
Resumo:
In order to investigate the role of myoepithelial cell and tumor microenvironment in salivary gland neoplasma, we have performed a study towards the effect of different extracellular matrix proteins (basement membrane matrix, type I collagen and fibronectin) on morphology and differentiation of benign myoepithelial cells from pleomorphic adenoma cultured with malignant cell culture medium from squamous cell carcinoma. We have also analyzed the expression of alpha-smooth muscle actin (alpha-SMA) and FGF-2 by immunofluorescence and qPCR. Our immunofluorescence results, supported by qPCR analysis, demonstrated that alpha-SMA and FGF-2 were upregulated in the benign myoepithelial cells from pleomorphic adenoma in all studied conditions on fibronectin substratum. However, the myoepithelial cells on fibronectin substratum did not alter their morphology under malignant conditioned medium stimulation and exhibited a stellate morphology and, occasionally focal adhesions with the substratum. In summary, our data demonstrated that the extracellular matrix exerts an important role in the morphology of the benign myoepithelial cells by the presence of focal adhesions and also inducing increase FGF-2 and alpha-SMA expression by these cells, especially in the fibronectin substratum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
BACKGROUND AND PURPOSE Autografts are used for bone reconstruction in regenerative medicine including oral and maxillofacial surgery. Bone grafts release paracrine signals that can reach mesenchymal cells at defect sites. The impact of the paracrine signals on osteogenic, adipogenic, and chondrogenic differentiation of mesenchymal cells has remained unclear. MATERIAL AND METHODS Osteogenesis, adipogenesis, and chondrogenesis were studied with murine ST2 osteoblast progenitors, 3T3-L1 preadipocytes, and ATDC5 prechondrogenic cells, respectively. Primary periodontal fibroblasts from the gingiva, from the periodontal ligament, and from bone were also included in the analysis. Cells were exposed to bone-conditioned medium (BCM) that was prepared from porcine cortical bone chips. RESULTS BCM inhibited osteogenic and adipogenic differentiation of ST2 and 3T3-L1 cells, respectively, as shown by histological staining and gene expression. No substantial changes in the expression of chondrogenic genes were observed in ATDC5 cells. Primary periodontal fibroblasts also showed a robust decrease in alkaline phosphatase and peroxisome proliferator-activated receptor gamma (PPARγ) expression when exposed to BCM. BCM also increased collagen type 10 expression. Pharmacologic blocking of transforming growth factor (TGF)-β receptor type I kinase with SB431542 and the smad-3 inhibitor SIS3 at least partially reversed the effect of BCM on PPARγ and collagen type 10 expression. In support of BCM having TGF-β activity, the respective target genes were increasingly expressed in periodontal fibroblasts. CONCLUSIONS The present work is a pioneer study on the paracrine activity of bone grafts. The findings suggest that cortical bone chips release soluble signals that can modulate differentiation of mesenchymal cells in vitro at least partially involving TGF-β signaling.