986 resultados para Conditional stability constant
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 ± 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10–70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52–6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β′Fe3+3(NN)β′Fe3+(NN)3 increased linearly with increasing pH according to log β′Fe3+3(NN)=2.4±0.6×pH+11.9±3.5log β′Fe3+(NN)3=2.4±0.6×pH+11.9±3.5 (salinity = 2.9, T = 20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 ± 4.1 nM equivalent of Fe(III) to 336.2 ± 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 ± 0.2 to 22.8 ± 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.
Resumo:
Several freshwater phytoplanktonic species (eukaryotic and prokaryotic) were grown in batch cultures up to stationary phase and quantified by chlorophyll a analysis. The complexation properties (conditional stability constant and total ligand concentration) of their exudates were investigated by complexometric titrations of the culture media using either copper or lead ion-selective electrodes. For most algae, Scatchard plot analysis of the titration data revealed two classes of copper-complexing ligands, one weaker and the other stronger. Strong copper-complexing agents were produced by Cyanophyta mainly in stationary growth phase. During exponential phase, ligand concentrations and the affinity for copper were similar for both Chlorophyta and Cyanophyta. Complexation parameters for Chlorophyta exudates were similar for both growth phases: exponential and stationary. In contrast, ligand concentrations were similar for Cyanophyta, but the conditional stability constants (the strength of association between ligand and metal) were different. Weak lead-complexing ligands were produced exclusively by two Chlorophyta.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Partial funding for open access provided by the UMD Libraries' Open Access Publishing Fund.
Resumo:
Copper(II) complexes of quaternised poly(4-vinylpyridine) (PVP) of different degrees of quaternisation and copper content have been prepared by crosslinking the polymer with 1,2-dibromoethane in the presence of Cu2+ ion as template. The stability constant of the PVP---Cu(II) complexes is found to increase with the degree of crosslinking quaternisation of the resin, but the rate at which Cu2+ is adsorbed by the resin decreases. An optimum combination of both stability and rate can be achieved with a moderate degree (31%) of crosslinking. A kinetic study reveals that quaternisation increases significantly the catalytic activity of the complex for the oxidation of S2O2−3 by O2 compared with PVP----Cu(II) without quaternisation, but it deactivates the complex for the oxidation of both S3O2−6 and S4O2−6. The batch reactor oxidation kinetics at pH 2.16, where the rate is observed to be maximum, is well explained by the Langmuir—Hinshelwood model assuming the coordination of both O2 and thioanion to Cu(II) as a precursor to the oxidation reaction.
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.
Resumo:
A detailed investigation of the hydrolysis of nickel in the lower concentration range has been made. The results have been analysed on the basis of 'Core + links' theory and on the assumption of the formation of one predominant complex. Evidence is obtained for the formation of Ni2 (OH)62- and its stability constant is calculated to be 1038.78
Resumo:
Sodium ion transfer across micro-water/1,2-dichloroethane (DCE) interface facilitated by a novel ionophore, terminal-vinyl liquid crystal crown ether (LCCE) was studied by cyclic voltammetry. LCCEs have potential applications because of their physicochemical properties and the utilization of crown ethers as selective ionophoric units in other functionalized compounds are interesting. Host-guest-type behavior for such compounds in the liquid-crystalline state is studied. The experimental results suggest that the transfer of the sodium ion facilitated by LCCE was controlled by diffusion of LCCE from bulk solution of DCE to the interface. The diffusion coefficient of LCCE in DCE was calculated to be equal to (3.62 +/- 0.20) x 10(-6) cm(2)/s. Steady-state voltammograms are due to sodium ion transfer facilitated by the formation of 1: 1 metal (M)-LCCE complex at the interface and the mechanism tends to be transfer by interfacial complexation or dissociation (TIC or TID). The stability constant of the complex formed was determined to be log beta(o) = 5.5 in DCE phase. The influence of parameters such as concentration of sodium ion and concentration of LCCE on the sodium ion transfer was investigated.
Resumo:
The sodium ion transfer across the micro-water/1,2-dichloroethane interface facilitated by a novel ionophore, liquid crystal crown ether was studied systematically. The sodium ion transfer facilitated by LCCE is controlled by diffusion studied by cyclic voltammetry. The diffusion coefficient of LCCE in 1,2-dichloroethane was calculated to be equal to (2.61 +/- 0.12) X 10(-6) cm(2)/s and the stability constant of the complex between Na+ and LCCE was determined as lg beta (o) = 5.7 in 1,2-dichloroethane.
Resumo:
The stability constant for complex of Pr(III) with adrenaline has been determined by potentiometric titration under biological conditions (37 degrees C and 0.15 mol/L NaCl). The absorption spectra of the Pr(III)-adrenaline system exhibit characteristic bands of Pr(III) at lower pH values. However, the charge transfer band which is due to the coordination of Pr(III) with adrenaline has been observed at higher pH values.
Resumo:
Locked nucleic acids (LNA), conformationally restricted nucleotide analogues, are known to enhance pairing stability and selectivity toward complementary strands. With the aim to contribute to a better understanding of the origin of these effects, the structure, thermal stability, hybridization thermodynamics, and base-pair dynamics of a full-LNA:DNA heteroduplex and of its isosequential DNA:DNA homoduplex were monitored and compared. CD measurements highlight differences in the duplex structures: the homoduplex and heteroduplex present B-type and A-type helical conformations, respectively. The pairing of the hybrid duplex is characterized, at all temperatures monitored (between 15 and 37 degrees C), by a larger stability constant but a less favorable enthalpic term. A major contribution to this thermodynamic profile emanates from the presence of a hairpin structure in the LNA single strand which contributes favorably to the entropy of interaction but leads to an enthalpy penalty upon duplex formation. The base-pair opening dynamics of both systems was monitored by NMR spectroscopy via imino protons exchange measurements. The measurements highlight that hybrid G-C base-pairs present a longer base-pair lifetime and higher stability than natural G-C base-pairs, but that an LNA substitution in an A-T base-pair does not have a favorable effect on the stability. The thermodynamic and dynamic data confirm a more favorable stacking of the bases in the hybrid duplex. This study emphasizes the complementarities between dynamic and thermodynamical studies for the elucidation of the relevant factors in binding events.
Resumo:
A series of four calix[5]arenes and three calix[6]arenes (R-calixarene-OCH2COR1) (R = H or Bu-t) with alkyl ketone residues (R-1 = Me or Bu-t) on the lower rim have been synthesized, and their affinity for complexation of alkali cations has been assessed through phase-transfer experiments and stability constant measurements. The conformations of these ketones have been probed by H-1 NMR and X-ray diffraction analysis, and by molecular mechanics calculations. Pentamer 3 (R R-1 = Bu-t) possesses a symmetrical cone conformation in solution and a very distorted cone conformation in the solid state. Pentamer 5 (R = H, R-1 = Bu-t) exists in a distorted 1,2-alternate conformation in the solid state, but in solution two slowly interconverting conformations, one a cone and the other presumed to be 1,2-alternate, can be detected. X-ray structure analysis of the sodium and rubidium perchlorate complexes of 3 reveal the cations deeply encapsulated by the ethereal and carbonyl oxygen atoms in distorted cone conformations which can be accurately reproduced by molecular mechanics calculations. The phase-transfer and stability constant data reveal that the extent of complexation depends on calixarene size and the nature of the alkyl residues adjacent to the ketonic carbonyls with tert-butyl much more efficacious than methyl.