216 resultados para Concurrency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This extended abstract summarizes the state-of-the-art solution to the structuring problem for models that describe existing real world or envisioned processes. Special attention is devoted to models that allow for the true concurrency semantics. Given a model of a process, the structuring problem deals with answering the question of whether there exists another model that describes the process and is solely composed of structured patterns, such as sequence, selection, option for simultaneous execution, and iteration. Methods and techniques for structuring developed by academia as well as products and standards proposed by industry are discussed. Expectations and recommendations on the future advancements of the structuring problem are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a new approach for structuring acyclic process models has been introduced. The algorithm is based on a transformation between the Refined Process Structure Tree (RPST) of a control flow graph and the Modular Decomposition Tree (MDT) of ordering relations. In this paper, an extension of the algorithm is presented that allows to partially structure process models in the case when a process model cannot be structured completely. We distinguish four different types of unstructuredness of process models and show that only two are possible in practice. For one of these two types of unstructuredness an algorithm is proposed that returns the maximally structured representation of a process model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concurrency matrix aids the detection of bit steerability of microcommand sets in a microprogram. In the present work, the concept of don't-cares is introduced into the concurrency matrix to identify the bit steerable microcommand sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concurrency control (CC) algorithms are important in distributed database systems to ensure consistency of the database. A number of such algorithms are available in the literature. The issue of performance evaluation of these algorithms has been recognized to be important. However, only a few studies have been carried out towards this. This paper deals with the performance evaluation of a CC algorithm proposed by Rosenkrantz et al. through a detailed simulation study. In doing so, the algorithm has been modified so that it can, within itself, take care of the redundancy in the database. The influences of various system parameters and the transaction profile on the response time and on the degree of conflict are considered. The entire study has been carried out using the programming language SIMULA on a DEC-1090 system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stimulation technique has gained much importance in the performance studies of Concurrency Control (CC) algorithms for distributed database systems. However, details regarding the simulation methodology and implementation are seldom mentioned in the literature. One objective of this paper is to elaborate the simulation methodology using SIMULA. Detailed studies have been carried out on a centralised CC algorithm and its modified version. The results compare well with a previously reported study on these algorithms. Here, additional results concerning the update intensiveness of transactions and the degree of conflict are obtained. The degree of conflict is quantitatively measured and it is seen to be a useful performance index. Regression analysis has been carried out on the results, and an optimisation study using the regression model has been performed to minimise the response time. Such a study may prove useful for the design of distributed database systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-agent systems implicate a high degree of concurrency at both the Inter- and Intra-Agent levels. Scalable, fault tolerant, Agent Grooming Environment (SAGE), the second generation, FIPA compliant MAS requires a built in mechanism to achieve both the Inter- and Intra-Agent concurrency. This paper dilates upon an attempt to provide a reliable, efficient and light-weight solution to provide intra-agent concurrency with-in the internal agent architecture of SAGE. It addresses the issues related to using the JAVA threading model to provide this level of concurrency to the agent and provides an alternative approach that is based on an eventdriven, concurrent and user-scalable multi-tasking model for the agent's internal model. The findings of this paper show that our proposed approach is suitable for providing an efficient and lightweight concurrent task model for SA GE and considerably outweighs the performance of multithreaded tasking model based on JAVA in terms of throughput and efficiency. This has been illustrated using the practical implementation and evaluation of both models. © 2004 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many real-time database applications arise in electronic financial services, safety-critical installations and military systems where enforcing security is crucial to the success of the enterprise. For real-time database systems supporting applications with firm deadlines, we investigate here the performance implications, in terms of killed transactions, of guaranteeing multilevel secrecy. In particular, we focus on the concurrency control (CC) aspects of this issue. Our main contributions are the following: First, we identify which among the previously proposed real-time CC protocols are capable of providing covert-channel-free security. Second, using a detailed simulation model, we profile the real-time performance of a representative set of these secure CC protocols for a variety of security-classified workloads and system configurations. Our experiments show that a prioritized optimistic CC protocol, OPT-WAIT, provides the best overall performance. Third, we propose and evaluate a novel "dual-CC" approach that allows the real-time database system to simultaneously use different CC mechanisms for guaranteeing security and for improving real-time performance. By appropriately choosing these different mechanisms, concurrency control protocols that provide even better performance than OPT-WAIT are designed. Finally, we propose and evaluate GUARD, an adaptive admission-control policy designed to provide fairness with respect to the distribution of killed transactions across security levels. Our experiments show that GUARD efficiently provides close to ideal fairness for real-time applications that can tolerate covert channel bandwidths of upto one bit per second.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different types of consistencies, viz., semiweak, weak, and strong, of a read-only transaction in a schedule s of a set T of transactions are defined and these are compared with the existing notions of consistencies of a read-only transaction in a schedule. We present a technique that enables a user to control the consistency of a read-only transaction in heterogeneous locking protocols. Since the weak consistency of a read-only transaction improves concurrency in heterogeneous locking protocols, the users can help to improve concurrency in heterogeneous locking protocols by supplying the consistency requirements of read-only transactions. A heterogeneous locking protocol P' derived from a locking protocol P that uses exclusive mode locks only and ensures serializability need not be deadlock-free. We present a sufficient condition that ensures the deadlock-freeness of Pprime, when P is deadlock-free and all the read-only transactions in Pprime are two phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each new generation of GPUs vastly increases the resources available to GPGPU programs. GPU programming models (like CUDA) were designed to scale to use these resources. However, we find that CUDA programs actually do not scale to utilize all available resources, with over 30% of resources going unused on average for programs of the Parboil2 suite that we used in our work. Current GPUs therefore allow concurrent execution of kernels to improve utilization. In this work, we study concurrent execution of GPU kernels using multiprogram workloads on current NVIDIA Fermi GPUs. On two-program workloads from the Parboil2 benchmark suite we find concurrent execution is often no better than serialized execution. We identify that the lack of control over resource allocation to kernels is a major serialization bottleneck. We propose transformations that convert CUDA kernels into elastic kernels which permit fine-grained control over their resource usage. We then propose several elastic-kernel aware concurrency policies that offer significantly better performance and concurrency compared to the current CUDA policy. We evaluate our proposals on real hardware using multiprogrammed workloads constructed from benchmarks in the Parboil 2 suite. On average, our proposals increase system throughput (STP) by 1.21x and improve the average normalized turnaround time (ANTT) by 3.73x for two-program workloads when compared to the current CUDA concurrency implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A case study of an aircraft engine manufacturer is used to analyze the effects of management levers on the lead time and design errors generated in an iteration-intensive concurrent engineering process. The levers considered are amount of design-space exploration iteration, degree of process concurrency, and timing of design reviews. Simulation is used to show how the ideal combination of these levers can vary with changes in design problem complexity, which can increase, for instance, when novel technology is incorporated in a design. Results confirm that it is important to consider multiple iteration-influencing factors and their interdependencies to understand concurrent processes, because the factors can interact with confounding effects. The article also demonstrates a new approach to derive a system dynamics model from a process task network. The new approach could be applied to analyze other concurrent engineering scenarios. © The Author(s) 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speculative Concurrency Control (SCC) [Best92a] is a new concurrency control approach especially suited for real-time database applications. It relies on the use of redundancy to ensure that serializable schedules are discovered and adopted as early as possible, thus increasing the likelihood of the timely commitment of transactions with strict timing constraints. In [Best92b], SCC-nS, a generic algorithm that characterizes a family of SCC-based algorithms was described, and its correctness established by showing that it only admits serializable histories. In this paper, we evaluate the performance of the Two-Shadow SCC algorithm (SCC-2S), a member of the SCC-nS family, which is notable for its minimal use of redundancy. In particular, we show that SCC-2S (as a representative of SCC-based algorithms) provides significant performance gains over the widely used Optimistic Concurrency Control with Broadcast Commit (OCC-BC), under a variety of operating conditions and workloads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an algorithm which extends the relatively new notion of speculative concurrency control by delaying the commitment of transactions, thus allowing other conflicting transactions to continue execution and commit rather than restart. This algorithm propagates uncommitted data to other outstanding transactions thus allowing more speculative schedules to be considered. The algorithm is shown always to find a serializable schedule, and to avoid cascading aborts. Like speculative concurrency control, it considers strictly more schedules than traditional concurrency control algorithms. Further work is needed to determine which of these speculative methods performs better on actual transaction loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new class of Concurrency Control Algorithms that is especially suited for real-time database applications. Our approach relies on the use of (potentially) redundant computations to ensure that serializable schedules are found and executed as early as possible, thus, increasing the chances of a timely commitment of transactions with strict timing constraints. Due to its nature, we term our concurrency control algorithms Speculative. The aforementioned description encompasses many algorithms that we call collectively Speculative Concurrency Control (SCC) algorithms. SCC algorithms combine the advantages of both Pessimistic and Optimistic Concurrency Control (PCC and OCC) algorithms, while avoiding their disadvantages. On the one hand, SCC resembles PCC in that conflicts are detected as early as possible, thus making alternative schedules available in a timely fashion in case they are needed. On the other hand, SCC resembles OCC in that it allows conflicting transactions to proceed concurrently, thus avoiding unnecessary delays that may jeopardize their timely commitment.