979 resultados para Concrete Damage Plasticity
Resumo:
The technique of externally bonding fiber-reinforced polymer (FRP) composites has become very popular worldwide for retrofitting existing reinforced concrete (RC) structures. Debonding of FRP from the concrete substrate is a typical failure mode in such strengthened structures. The bond behavior between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behavior has been extensively investigated experimentally, commonly using a single or double shear test of the FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with numerical simulation, chiefly due to difficulties in the accurate modeling of the complex behavior of concrete. This paper presents a simple but robust finite-element (FE) model for simulating the bond behavior in the entire debonding process for the single shear test. A concrete damage plasticity model is proposed to capture the concrete-to-FRP bond behavior. Numerical results are in close agreement with test data, validating the model. In addition to accuracy, the model has two further advantages: it only requires the basic material parameters (i.e., no arbitrary user-defined parameter such as the shear retention factor is required) and it can be directly implemented in the FE software ABAQUS.
Resumo:
The technique of externally bonding fibre reinforced polymer (FRP) composites has been becoming popular worldwide for retrofitting existing reinforced concrete (RC) structures. A major failure mode in such strengthened structures is the debonding of FRP from the concrete substrate. The bond behaviour between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behaviour has been extensively investigated experimentally, commonly using the pull-off test of FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with the numerical simulation of this bond behaviour, chiefly due to difficulties in accurately modelling the complex behaviour of concrete. This paper proposes a robust finite element (FE) model for simulating the bond behaviour in the entire loading process in the pull-off test. A concrete damage plasticity model based on the plastic degradation theory is proposed to overcome the weakness of the elastic degradation theory which has been commonly adopted in previous studies. The model produces results in very close agreement with test data. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011.
Resumo:
The authors appreciate the discusser’s interest in the original paper and for the valuable discussion, which provides the opportunity to clarify and reiterate a few points made in the original paper. The comments and questions raised by the discusser are addressed in the following sections.
Resumo:
The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.
Resumo:
First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.
Resumo:
This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.
Resumo:
The Acoustic emission (AE) technique, as one of non-intrusive and nondestructive evaluation techniques, acquires and analyzes the signals emitting from deformation or fracture of materials/structures under service loading. The AE technique has been successfully applied in damage detection in various materials such as metal, alloy, concrete, polymers and other composite materials. In this study, the AE technique was used for detecting crack behavior within concrete specimens under mechanical and environmental frost loadings. The instrumentations of the AE system used in this study include a low-frequency AE sensor, a computer-based data acquisition device and a preamplifier linking the AE sensor and the data acquisition device. The AE system purchased from Mistras Group was used in this study. The AE technique was applied to detect damage with the following laboratory tests: the pencil lead test, the mechanical three-point single-edge notched beam bending (SEB) test, and the freeze-thaw damage test. Firstly, the pencil lead test was conducted to verify the attenuation phenomenon of AE signals through concrete materials. The value of attenuation was also quantified. Also, the obtained signals indicated that this AE system was properly setup to detect damage in concrete. Secondly, the SEB test with lab-prepared concrete beam was conducted by employing Mechanical Testing System (MTS) and AE system. The cumulative AE events and the measured loading curves, which both used the crack-tip open displacement (CTOD) as the horizontal coordinate, were plotted. It was found that the detected AE events were qualitatively correlated with the global force-displacement behavior of the specimen. The Weibull distribution was vii proposed to quantitatively describe the rupture probability density function. The linear regression analysis was conducted to calibrate the Weibull distribution parameters with detected AE signals and to predict the rupture probability as a function of CTOD for the specimen. Finally, the controlled concrete freeze-thaw cyclic tests were designed and the AE technique was planned to investigate the internal frost damage process of concrete specimens.
Resumo:
Bridge girder bearings rest on pedestals to transfer the loading safely to the pier headstock. In spite of the existence of industry guidelines, due to construction complexities, such guidelines are often overlooked. Further, there is paucity of research on the performance of pedestals, although their failure could cause exorbitant maintenance costs. Although reinforced concrete pedestals are recommended in the industry design guidelines, unreinforced concrete and/ or epoxy glue pedestals are provided due to construction issues; such pedestals fail within a very short period of service. With a view to understanding the response of pedestals subject to monotonic loading, a three-dimensional nonlinear explicit finite element micro-model of unreinforced and reinforced concrete pedestals has been developed. Contact and material nonlinearity have been accounted for in the model. It is shown that the unreinforced concrete pedestals suffer from localised edge stress singularities, the failure of which was comparable to those in the field. The reinforced concrete pedestals, on the other hand, distribute the loading without edge stress singularity, again conforming to the field experience.
Resumo:
This paper presents analysis and discussion of the b- and ib-values calculated from the acoustic emission (AE) signals recorded during dynamic shake-table tests conducted on a reinforced concrete (RC) frame subjected to several uniaxial seismic simulations of increasing intensity until collapse. The intensity of shaking was controlled by the peak acceleration applied to the shake-table in each seismic simulation, and it ranged from 0.08 to 0.47 times the acceleration of gravity. The numerous spurious signals not related to concrete damage that inevitably contaminate AE measurements obtained from complex dynamic shake-table tests were properly filtered with an RMS filter and the use of guard sensors. Comparing the b- and ib-values calculated through the tests with the actual level of macro-cracking and damage observed during testing, it was concluded that the limit value of 0.05 proposed in previous research to determine the onset of macro-cracks should be revised in the case of earthquake-type dynamic loading. Finally, the b- and ibvalues were compared with the damage endured by the RC frame evaluated both visually and quantitatively in terms of the inter-story drift index.
Resumo:
Large concrete structures need to be inspected in order to assess their current physical and functional state, to predict future conditions, to support investment planning and decision making, and to allocate limited maintenance and rehabilitation resources. Current procedures in condition and safety assessment of large concrete structures are performed manually leading to subjective and unreliable results, costly and time-consuming data collection, and safety issues. To address these limitations, automated machine vision-based inspection procedures have increasingly been proposed by the research community. This paper presents current achievements and open challenges in vision-based inspection of large concrete structures. First, the general concept of Building Information Modeling is introduced. Then, vision-based 3D reconstruction and as-built spatial modeling of concrete civil infrastructure are presented. Following that, the focus is set on structural member recognition as well as on concrete damage detection and assessment exemplified for concrete columns. Although some challenges are still under investigation, it can be concluded that vision-based inspection methods have significantly improved over the last 10 years, and now, as-built spatial modeling as well as damage detection and assessment of large concrete structures have the potential to be fully automated.
Resumo:
A methodology has been developed for characterising the mechanical behaviour of concrete, based on the damaged plasticity model, enriched with a user subroutine (V)USDFLD in order to capture better the ductility of the material under moderate confining pressures. The model has been applied in the context of the international benchmark IRIS_2012, organised by the OECD/NEA/CSNI Nuclear Energy Agency, dealing with impacts of rigid and deformable missiles against reinforced concrete targets. A slightly modified version of the concrete damaged plasticity model was used to represent the concrete. The simulation results matched very well the observations made during the actual tests. Particularly successful predictions involved the energy spent by the rigid missile in perforating the target, the crushed length of the deformable missile, the crushed and cracked areas of the concrete target, and the values of the strains recorded at a number of locations in the concrete slab.
Resumo:
A meso-scale finite element model is presented for investigating the FRP-concrete bond behaviour under static and dynamic loadings. It adopts a local concrete damage model. A large number of single shear tests under static pull-off loading were modeled. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of the load-carrying capacity and the local bond-slip behaviour. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.