933 resultados para Concentric contraction
Resumo:
Background: The literature reports that the eccentric muscular action produces greater force and lower myoelectric activity than the concentric muscular action, while the heart rate (HR) responses are bigger during concentric contraction. Objectives: To investigate the maximum average torque (MAT), surface electromyographic (SEMG) and the heart rate (HR) responses during different types of muscular contraction and angular velocities in older men. Methods: Twelve healthy men (61.7 +/- 1.6years) performed concentric (C) and eccentric (E) isokinetic knee extension-flexion at 60 degrees/s and 120 degrees/s. SEMG activity was recorded from vastus lateralis muscle and normalized by Root Mean Square-RMS (mu V) of maximal isometric knee extension at 60 degrees. HR (beats/min) and was recorded at rest and throughout each contraction. The data were analyzed by the Friedman test for repeated measures with post hoc Dunn's test (p<0.05). Results: The median values of MAT (N.m/kg) was smaller and the RMS (mu V) was larger during concentric contraction (C60 degrees/s=2.80 and 0.99; C120 degrees/s=2.46 and 1.0) than eccentric (E60 degrees/s=3.94 and 0.85; E120 degrees/s=4.08 and 0.89), respectively. The HR variation was similar in the four conditions studied. Conclusion: The magnitude of MAT and RMS responses in older men were dependent of the nature of the muscular action and independent of the angular velocity, whereas HR response was not influenced by these factors.
Resumo:
Background: Coactivation may be both desirable (injury prevention) or undesirable (strength measurement). In this context, different styles of muscle strength stimulus have being investigated. In this study we evaluated the effects of verbal and visual stimulation on rectus femoris and biceps femoris muscles contraction during isometric and concentric. Methods: We investigated 13 men (age =23.1 ± 3.8 years old; body mass =75.6 ± 9.1 kg; height =1.8 ± 0.07 m). We used the isokinetic dynamometer BIODEX device and an electromyographic (EMG) system. We evaluated the maximum isometric and isokinetic knee extension and flexion at 60°/s. The following conditions were evaluated: without visual nor verbal command (control); verbal command; visual command and; verbal and visual command. In relation to the concentric contraction, the volunteers performed five reciprocal and continuous contractions at 60°/s. With respect to isometric contractions it was made three contractions of five seconds for flexion and extension in a period of one minute. Results: We found that the peak torque during isometric flexion was higher in the subjects in the VVC condition (p > 0.05). In relation to muscle coactivation, the subjects presented higher values at the control condition (p > 0.05). Conclusion: We suggest that this type of stimulus is effective for the lower limbs.
Resumo:
Abstract Background: Coactivation may be both desirable (injury prevention) or undesirable (strength measurement). In this context, different styles of muscle strength stimulus have being investigated. In this study we evaluated the effects of verbal and visual stimulation on rectus femoris and biceps femoris muscles contraction during isometric and concentric. Methods: We investigated 13 men (age =23.1 ± 3.8 years old; body mass =75.6 ± 9.1 kg; height =1.8 ± 0.07 m). We used the isokinetic dynamometer BIODEX device and an electromyographic (EMG) system. We evaluated the maximum isometric and isokinetic knee extension and flexion at 60°/s. The following conditions were evaluated: without visual nor verbal command (control); verbal command; visual command and; verbal and visual command. In relation to the concentric contraction, the volunteers performed five reciprocal and continuous contractions at 60°/s. With respect to isometric contractions it was made three contractions of five seconds for flexion and extension in a period of one minute. Results: We found that the peak torque during isometric flexion was higher in the subjects in the VVC condition (p > 0.05). In relation to muscle coactivation, the subjects presented higher values at the control condition (p > 0.05). Conclusion We suggest that this type of stimulus is effective for the lower limbs.
Resumo:
Hamstring strain injuries are the predominant injury in many sports, costing athletes and clubs a significant financial and performance burden. Therefore the ability to identify and intervene with individuals who are considered at a high risk of injury is important. One measure which has grown in popularity as an outcome variable following hamstring intervention/prevention studies and rehabilitation is the angle of peak knee flexor torque. This current opinion article will firstly introduce the measure and the processes behind it. Secondly, this article will summarise how the angle of peak knee flexor torque has been suggested to measure hamstring strain injury risk. Finally various limitations will be presented and outlined as to how they may influence the measure. These include the lack of muscle specificity, the common concentric contraction mode of assessment, reliability of the measure, various neural contributions (such as rate of force development and neuromuscular inhibition) as well as the lack of prospective data showing any predictive value in the measure.
Resumo:
Patellofemoral pain syndrome (PFPS) is described as anterior or retropatellar pain knee in the absence of other pathologies and is frequently associated with dysfunction of the vastus medialis oblique (VMO). However, several studies have demonstrated the inability to selectively activate this muscle through exercise. To evaluate the effect of Neuromuscular Electrical Stimulation (NMES) selective VMO in women with syndrome. We evaluated thirty-eight women: twenty in the control group (24.15 ± 2.60 years) and eighteen diagnosed with PFPS (25.56 ± 3.55 years). Both groups were evaluated before and after a protocol of electro stimulation. To measure for comparing groups before and after treatment, we assessed the extensor torque concentric and eccentric knee through an isokinetic dynamometer, the intensity (Root Mean Square - RMS) and the onset of activation (onset) of VMO compared to the vastus lateralis (VL) in two types of exercise: open and closed kinetic chain. . Statistical analysis was performed using SPSS 15.0, with a significance level of 5%. Results: Our data showed an increase in the intensity of activation (RMS) of the VMO muscle after NMES in both study groups. During concentric contraction the RMS of the VMO before the NMES was 105.69 ± 32.26 μV and after a single intervention was 122.10 ± 39.62 μV (p = 0.048) for the control group. In the group with PPS, we found a similar behavior, with RMS of the VMO before NMES of 96.25 ± 18.83 μV and 139.80 ± 65.88 μV after the intervention (p = 0.0001). However, there was no evidence in the RMS value of VL muscle. The onset was calculated by subtracting the onset of VL by the onset of VMO. For the group with PFPS, the onset before the intervention was -0.007 ± 0.14 ms, indicating a delay of the VMO relative to VL, and after NMES was 0.074 ± 0.09 ms (p = 0.016), showing an activation previous VMO to VL. The same occurred for the control group. We also observed that NMES increased knee extensor power during the concentric contraction in both groups. Before the intervention the mean power was 28.97 ± 9.01 W for the PPS group and after NMES was 34.38 ± 7.61 W (p = 0.0001). Conclusion: We observed an increase in electromyographic activity of the VMO and also an anticipatory effect of this muscle
Resumo:
O objetivo deste estudo foi comparar a taxa de desenvolvimento de força (TDF) nas contrações isométrica e isocinética concêntrica a 60°.s-1 e 180°.s-1. Quatorze indivíduos do gênero masculino (idade = 23,1 ± 2,8 anos; estatura = 174 ± 31,3cm; massa corporal = 81 ± 12kg) realizaram inicialmente uma familiarização ao equipamento isocinético. Posteriormente, os indivíduos realizaram em ordem randômica cinco contrações isocinéticas máximas para os extensores do joelho a 60°.s-1 e 180°.s-1 para determinar o torque máximo concêntrico (TMC) e duas contrações isométricas máximas de 3s para determinar o torque máximo isométrico (TMI). O TMI (301,4 ± 56,0N.m) foi maior do que o TMC a 60°.s-1 (239,8 ± 42,2N.m) e 180°.s-1 (175,0 ± 32,5 N.m). O TMC a 60°.s-1 foi maior do que o TMC a 180°.s-1. Para os intervalos de 0-30ms e 0-50ms, a TDF na condição isométrica (1.196,6 ± 464,6 e 1.326,5 ± 514,2N.m.s-1, respectivamente) foi similar à TDF a 60°.s-1 (1.035,4 ± 446,2 e 1.134,3 ± 448,4N.m.s-1) e maior do que a 180°.s-1 (656,7 ± 246,6 e 475,2 ± 197,9N.m.s-1), sendo ainda que a TDF na contração concêntrica a 180°.s-1 foi menor do que a 60°.s-1. No intervalo de 0-100ms, a TDF da contração isométrica (1.248,8 ± 417,4N.m.s-1) foi maior que a obtida na contração isocinética rápida (909,2 ± 283,4N.m.s-1). A TDF obtida na contração isocinética lenta (1.005,4 ± 247,7N.m.s-1) foi similar à obtida na contração isométrica e na concêntrica isocinética rápida. No intervalo 0-150ms, a TDF isométrica (1.084,2 ± 332,1N.m.s-1) foi maior do que as concêntricas (60°.s-1 e 180°.s-1) (834,8 ± 184,2 e 767,6 ± 201,8N.m.s-1, respectivamente), não existindo diferenças entre estas duas últimas. Conclui-se que a TDF é dependente do tipo e da velocidade de contração, suportando a hipótese de que maiores velocidades de contração acarretam maior inibição do drive neural no início do movimento.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O objetivo deste estudo foi comparar a taxa de desenvolvimento de força (TDF) nas contrações isométrica e isocinéticas concêntrica a 60°.s-1 e 180°.s-1. Quatorze indivíduos do gênero masculino (idade = 23,1±2,8 anos; estatura = 174±31,3 cm e; massa corporal = 81±12 kg) participaram deste estudo. Na primeira visita foi realizada uma familiarização ao equipamento isocinético. Posteriormente, os indivíduos realizaram em ordem randômica 5 contrações isocinéticas máximas para os extensores do joelho em 60°.s-1 e 180°.s-1 para determinar o torque máximo concêntrico (TMC) e 2 contrações isométricas máximas de 3 s para determinar o torque máximo isométrico (TMI). O TMI (301,4±56,0 N.m) foi maior do que o TMC a 60°.s-1 (239,8±42,2 N.m) e 180°.s-1 (175,0±32,5 N.m). O TMC a 60°.s-1 foi maior do que o TMC a 180°.s-1. Para os intervalos de 0-30ms e 0-50ms, a TDF na condição isométrica (1196,6±464,6 e 1326,5±514,2 N.m.s-1, respectivamente) foi similar à TDF a 60°.s- 1 (1035,4±446,2 e 1134,3±448,4 N.m.s-1) e maior do que a 180°.s-1 (656,7±246,6 e 475,2±197,9 N.m.s-1), sendo ainda que a TDF na contração concêntrica rápida foi menor do que na lenta. No intervalo 0-100ms, a TDF da contração isométrica (1248,8±417,4 N.m.s-1) foi significantemente maior que a obtida na contração isocinética rápida (909,2±283,4 N.m.s- 1). A TDF obtida na contração isocinética lenta (1005,4±247,7 N.m.s-1) foi similar à obtida na contração isométrica e na concêntrica isocinética rápida. No intervalo 0-150ms, a TDF isométrica (1084,2±332,1 N.m.s-1) foi maior do que as concêntricas (60°.s-1 e 180°.s-1) (834,8±184,2 e 767,6±201,8 N.m.s-1, respectivamente), não existindo diferenças entre estas duas últimas. Conclui-se que a TDF é...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Ferreira, SLA, Panissa, VLG, Miarka, B, and Franchini, E. Postactivation potentiation: effect of various recovery intervals on bench press power performance. J Strength Cond Res 26(3): 739-744, 2012-Postactivation potentiation (PAP) is a strategy used to improve performance in power activities. The aim of this study was to determine if power during bench press exercise was increased when preceded by 1 repetition maximum (1RM) in the same exercise and to determine which time interval could optimize PAP response. For this, 11 healthy male subjects (age, 25 +/- 4 years; height, 178 +/- 6 cm; body mass, 74 +/- 8 kg; bench press 1RM, 76 +/- 19 kg) underwent 6 sessions. Two control sessions were conducted to determine both bench press 1RM and power (6 repetitions at 50% 1RM). The 4 experimental sessions were composed of a 1RM exercise followed by power sets with different recovery intervals (1, 3, 5, and 7 minutes), performed on different days, and determined randomly. Power values were measured via Peak Power equipment (Cefise, Nova Odessa, Sao Paulo, Brazil). The conditions were compared using an analysis of variance with repeated measures, followed by a Tukey test. The significance level was set at p < 0.05. There was a significant increase in PAP in concentric contractions after 7 minutes of recovery compared with the control and 1-minute recovery conditions (p < 0.05). Our results indicated that 7 minutes of recovery has generated an increase in PAP in bench press and that such a strategy could be applied as an interesting alternative to enhance the performance in tasks aimed at increasing upper-body power performance.
Resumo:
Purpose To determine i) the architectural adaptations of the biceps femoris long head (BFlf) following concentric or eccentric strength training interventions; ii) the time course of adaptation during training and detraining. Methods Participants in this randomized controlled trial (control [n=28], concentric training group [n=14], eccentric training group [n=14], males) completed a 4-week control period, followed by 6 weeks of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 days of detraining. Architectural characteristics of BFlf were assessed at rest and during graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of detraining. Results BFlf fascicle length was significantly longer in the eccentric training group (p<0.05, d range: 2.65 to 2.98) and shorter in the concentric training group (p<0.05, d range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric contraction intensities. Following the 28-day detraining period, BFlf fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared to the end of the intervention (p<0.05, d range: -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group following the detraining period. Conclusions These results provide evidence that short term resistance training can lead to architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of BFlf fascicle length was reversed and returned to baseline values following 28 days of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.
Resumo:
The purpose of this study was to identify the Electromyographic Fatigue Threshold (EMG FT) of the biceps brachii muscle bilaterally during the elbow flexion in tests performed in different times: 30 second test, 1 minute test and fatiguing test, in concentric (CC) and eccentric (EC) phases. Nine healthy young men performed the elbow flexion with loads corresponding at 25%, 35% and 45% of the one repetition maximum (1-RM) in separate days. The results indicated that the test applied for the biceps brachii muscle during elbow flexion induced a progressive increment of EMG activity with time indicating muscle fatigue and allowed the identification of the EMG FT. The three tests presented no difference of EMG FT between CC and EC phases bilaterally.
Resumo:
Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. ---------- Design: Within-subject, counterbalanced, mixed design. ---------- Setting: Institutional. ---------- Participants: 11 healthy, recreationally active male adults. ---------- Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. ---------- Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. ---------- Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. ---------- Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.