840 resultados para Concentrated solution
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.
Resumo:
In this study, the events following application of the insecticideDemand 2.5 concentrated solution (CS) in the field, to control Tityus stigmurus, were investigated. Data on attitudes and practices relating to scorpionism were collected using a questionnaire. During the months of May to July 2005, 69 premises were monitored on different days following insecticide treatment, focusing on scorpion frequency and mortality. According to the results, 42% of the premises showed scorpion incidence, with an average of three specimens per house. The highest incidence was recorded during the first week following the treatment. Only 7% of the specimens were found dead. Most (72%) of the population showed knowledge about prevention and control measures. Despite this, 100% of the premises presented breeding sites, mainly in debris (79.7%). These results indicate that the scorpion control method used by health agents during this investigation was not efficient, and the results suggest that the method may have had a dispersive effect on these animals.
Resumo:
A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.
Resumo:
The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide A beta 16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and Molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations, The Solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics Simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures Were used to simulate Circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally.(in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady-shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5-35 degrees C. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G` and G `` moduli than the variation in temperature.
Resumo:
The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound
Resumo:
Polyols are widely used as sugar substitutes and provide texture to foods. Guar gum has many applications in food industry such as increasing product viscosity and improving texture. Knowledge of rheological properties of gum/polyol systems is important to permit replacing sugar while maintaining product texture. In this work, rheological properties of 0.1, 0.5 and 1 g/100 g guar solutions containing 10 and 40 g/100 g of maltitol, sorbitol, or xylitol were studied. The behavior of these mixtures was evaluated by steady and oscillatory shear measurements, and after a freezing/thawing cycle. Apparent viscosity of guar solutions increased with addition of polyols and with the increase in their concentrations, except for 40 g/100 g sorbitol addition to 1 g/100 g guar gum, in which the apparent viscosity decreased. Addition of polyols also increased the dynamic moduli of the systems. In mixtures of guar with 40 g/100 g polyol, the phase angle (δ) was below unity, but was dependent on frequency, which is characteristic of concentrated solutions with a certain degree of structuring. FTIR spectroscopy was studied to provide information on possible interactions between guar gum and polyols. Analyses carried out after freezing/thawing showed no changes in the viscoelastic behavior of the solutions. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O beneficiamento de caulim para cobertura de papel produz grandes volumes de rejeito, constituído essencialmente do argilomineral caulinita, usado neste trabalho como material de partida para síntese de alúmen de amônio, visando a obtenção de alumina livre de sódio e de baixa granulometria para utilização cerâmica. O método de síntese desenvolvido para obtenção do alúmen de amônio constitui-se das etapas: calcinação do rejeito, lixiviação sulfúrica da metacaulinita, seguida da neutralização/cristalização da solução de Al2(SO4)3 com NH4OH concentrado. No processo, são estudadas as variáveis: temperatura de calcinação (650 °C, 700 °C, 750 °C) e tempo de calcinação do rejeito (30, 60 e 120 min), concentração de H2SO4, temperatura de lixiviação (70 °C, 80 °C e 90 °C) sobre a cinética de lixiviação do alumínio. Estudou-se também o efeito do pH na cristalização do alúmen de amônio, apresentando-se as análises químicas, DRX, ATD, ATG e granulometria dos materiais utilizados e sintetizados.
Resumo:
Topologische Beschränkungen beeinflussen die Eigenschaften von Polymeren. Im Rahmen dieser Arbeit wird mit Hilfe von Computersimulationen im Detail untersucht, inwieweit sich die statischen Eigenschaften von kollabierten Polymerringen, Polymerringen in konzentrierten Lösungen und aus Polymerringen aufgebauten Bürsten mit topologischen Beschränkungen von solchen ohne topologische Beschränkungen unterscheiden. Des Weiteren wird analysiert, welchen Einfluss geometrische Beschränkungen auf die topologischen Eigenschaften von einzelnen Polymerketten besitzen. Im ersten Teil der Arbeit geht es um den Einfluss der Topologie auf die Eigenschaften einzelner Polymerketten in verschiedenen Situationen. Da allerdings gerade die effiziente Durchführung von Monte-Carlo-Simulationen von kollabierten Polymerketten eine große Herausforderung darstellt, werden zunächst drei Bridging-Monte-Carlo-Schritte für Gitter- auf Kontinuumsmodelle übertragen. Eine Messung der Effizienz dieser Schritte ergibt einen Beschleunigungsfaktor von bis zu 100 im Vergleich zum herkömmlichen Slithering-Snake-Algorithmus. Darauf folgt die Analyse einer einzelnen, vergröberten Polystyrolkette in sphärischer Geometrie hinsichtlich Verschlaufungen und Knoten. Es wird gezeigt, dass eine signifikante Verknotung der Polystrolkette erst eintritt, wenn der Radius des umgebenden Kapsids kleiner als der Gyrationsradius der Kette ist. Des Weiteren werden sowohl Monte-Carlo- als auch Molekulardynamiksimulationen sehr großer Ringe mit bis zu einer Million Monomeren im kollabierten Zustand durchgeführt. Während die Konfigurationen aus den Monte-Carlo-Simulationen aufgrund der Verwendung der Bridging-Schritte sehr stark verknotet sind, bleiben die Konfigurationen aus den Molekulardynamiksimulationen unverknotet. Hierbei zeigen sich signifikante Unterschiede sowohl in der lokalen als auch in der globalen Struktur der Ringpolymere. Im zweiten Teil der Arbeit wird das Skalierungsverhalten des Gyrationsradius der einzelnen Polymerringe in einer konzentrierten Lösung aus völlig flexiblen Polymerringen im Kontinuum untersucht. Dabei wird der Anfang des asymptotischen Skalierungsverhaltens, welches mit dem Modell des “fractal globules“ konsistent ist, erreicht. Im abschließenden, dritten Teil dieser Arbeit wird das Verhalten von Bürsten aus linearen Polymeren mit dem von Ringpolymerbürsten verglichen. Dabei zeigt sich, dass die Struktur und das Skalierungsverhalten beider Systeme mit identischem Dichteprofil parallel zum Substrat deutlich voneinander abweichen, obwohl die Eigenschaften beider Systeme in Richtung senkrecht zum Substrat übereinstimmen. Der Vergleich des Relaxationsverhaltens einzelner Ketten in herkömmlichen Polymerbürsten und Ringbürsten liefert keine gravierenden Unterschiede. Es stellt sich aber auch heraus, dass die bisher verwendeten Erklärungen zur Relaxationsverhalten von herkömmlichen Bürsten nicht ausreichen, da diese lediglich den anfänglichen Zerfall der Korrelationsfunktion berücksichtigen. Bei der Untersuchung der Dynamik einzelner Monomere in einer herkömmlichen Bürste aus offenen Ketten vom Substrat hin zum offenen Ende zeigt sich, dass die Monomere in der Mitte der Kette die langsamste Relaxation besitzen, obwohl ihre mittlere Verrückung deutlich kleiner als die der freien Endmonomere ist.
Resumo:
Tin-containing fluoride solutions can reduce erosive tissue loss, but the effects of the reaction between tin and enamel are still not clear. During a 10-d period, enamel specimens were cyclically demineralized (0.05 M citric acid, pH 2.3, 6 x 5 min d(-1)) and remineralized (between the demineralization cycles and overnight). In the negative-control group, no further treatment was performed. Three groups were treated (2 x 2 min d(-1)) with tin-containing fluoride solutions (400, 1,400 or 2,100 ppm Sn2+, all 1,500 ppm F-, pH 4.5). Three additional groups were treated with test solutions twice daily, but without demineralization. Tissue loss was determined profilometrically. Energy-dispersive X-ray spectroscopy was used to measure the tin content on and within three layers (10 mum each) beneath the surface. In addition, scanning electron microscopy was conducted. All test preparations significantly reduced tissue loss. Deposition of tin on surfaces was higher without erosion than with erosion, but no incorporation of tin into enamel was found without demineralization. Under erosive conditions, both highly concentrated solutions led to the incorporation of tin up to a depth of 20 mum; the less-concentrated solution led to small amounts of tin in the outer 10 mum. The efficacy of tin-containing solutions seems to depend mainly on the incorporation of tin into enamel.
Resumo:
Como consecuencia del proceso de desalación, se produce el vertido al mar de un agua de rechazo hipersalino o salmuera. La salinidad de este vertido es variable, dependiendo del origen de la captación y del proceso de tratamiento. Muchos de los hábitats y biocenosis de los ecosistemas marinos se encuentran adaptados a ambientes de salinidad casi constante y son muy susceptibles a los incrementos de salinidad originados por estos vertidos. Junto con el vertido de salmuera otro de los principales inconvenientes que plantean las plantas desaladoras es el alto consumo energético, con todas las desventajas que esto supone: alto coste del agua desalada para los consumidores, contaminación del medio... El desarrollo de los métodos de vertido, herramientas de gestión de la salmuera, estudios del comportamiento de la pluma salina… ha buscado la mitigación de estos efectos sobre los ecosistemas marinos. El desarrollo en membranas de ósmosis inversa, diseño de bombas y sistemas de recuperación de energía ha permitido también la reducción del consumo energético en las plantas de desalación. Sin embargo, estos campos parecen haber encontrado un techo tecnológico difícil de rebasar en los últimos tiempos. La energía osmótica se plantea como uno de los caminos a investigar aplicado al campo de la reducción del consumo energético en desalación de agua de mar, a través del aprovechamiento energético de la salmuera. Con esta tesis se pretende cumplir principalmente con los siguientes objetivos: reducción del consumo energético en desalación, mitigar el impacto del vertido sobre el medio y ser una nueva herramienta en la gestión de la salmuera. En el presente documento se plantea el desarrollo de un nuevo proceso que utiliza el fenómeno de la ósmosis directa a través de membranas semipermeables, y busca la sinergia desalación depuración, integrando ambos, en un único proceso de tratamiento dentro del ciclo integral del agua. Para verificar los valores de producción, calidad y rendimiento del proceso, se proyecta y construye una planta piloto ubicada en la Planta Desaladora de Alicante II, escalada de tal manera que permite la realización de los ensayos con equipos comerciales de tamaño mínimo. El objetivo es que el resultado final sea extrapolable a tamaños superiores sin que el escalado afecte a la certeza y fiabilidad de las conclusiones obtenidas. La planta se proyecta de forma que el vertido de una desaladora de ósmosis inversa junto con el vertido de un terciario convencional, se pasan por una ósmosis directa y a continuación por una ósmosis inversa otra vez, ésta última con el objeto de abrir la posibilidad de incrementar la producción de agua potable. Ambas ósmosis están provistas de un sistema de pretratamiento físico-químico (para adecuar la calidad del agua de entrada a las condiciones requeridas por las membranas en ambos casos), y un sistema de limpieza química. En todos los ensayos se usa como fuente de disolución concentrada (agua salada), el rechazo de un bastidor de ósmosis inversa de una desaladora convencional de agua de mar. La fuente de agua dulce marca la distinción entre dos tipos de ensayos: ensayos con el efluente del tratamiento terciario de una depuradora convencional, con lo que se estudia el comportamiento de la membrana ante el ensuciamiento; y ensayos con agua permeada, que permiten estudiar el comportamiento ideal de la membrana. Los resultados de los ensayos con agua salobre ponen de manifiesto problemas de ensuciamiento de la membrana, el caudal de paso a través de la misma disminuye con el tiempo y este efecto se ve incrementado con el aumento de la temperatura del agua. Este fenómeno deriva en una modificación del pretratamiento de la ósmosis directa añadiendo un sistema de ultrafiltración que ha permitido que la membrana presente un comportamiento estable en el tiempo. Los ensayos con agua permeada han hecho posible estudiar el comportamiento “ideal” de la membrana y se han obtenido las condiciones óptimas de operación y a las que se debe tender, consiguiendo tasas de recuperación de energía de 1,6; lo que supone pasar de un consumo de 2,44 kWh/m3 de un tren convencional de ósmosis a 2,28 kWh/m3 al añadir un sistema de ósmosis directa. El objetivo de futuras investigaciones es llegar a tasas de recuperación de 1,9, lo que supondría alcanzar consumos inferiores a 2 kWh/m3. Con esta tesis se concluye que el proceso propuesto permite dar un paso más en la reducción del consumo energético en desalación, además de mitigar los efectos del vertido de salmuera en el medio marino puesto que se reduce tanto el caudal como la salinidad del vertido, siendo además aplicable a plantas ya existentes y planteando importantes ventajas económicas a plantas nuevas, concebidas con este diseño. As a consequence of the desalination process, a discharge of a hypersaline water or brine in the sea is produced. The salinity of these discharges varies, depending on the type of intake and the treatment process. Many of the habitats and biocenosis of marine ecosystems are adapted to an almost constant salinity environment and they are very susceptible to salinity increases caused by these discharges. Besides the brine discharge, another problem posed by desalination plants, is the high energy consumption, with all the disadvantages that this involves: high cost of desalinated water for consumers, environmental pollution ... The development of methods of disposal, brine management tools, studies of saline plume ... has sought the mitigation of these effects on marine ecosystems. The development of reverse osmosis membranes, pump design and energy recovery systems have also enabled the reduction of energy consumption in desalination plants. However, these fields seem to have reached a technological ceiling which is difficult to exceed in recent times. Osmotic power is proposed as a new way to achieve the reduction of energy consumption in seawater desalination, through the energy recovery from the brine. This thesis mainly tries to achieve the following objectives: reduction of energy consumption in desalination, mitigation of the brine discharge impact on the environment and become a new tool in the management of the brine. This paper proposes the development of a new process, that uses the phenomenon of forward osmosis through semipermeable membranes and seeks the synergy desalination-wastewater reuse, combining both into a single treatment process within the integral water cycle. To verify the production, quality and performance of the process we have created a pilot plant. This pilot plant, located in Alicante II desalination plant, has been designed and built in a scale that allows to carry out the tests with minimum size commercial equipment. The aim is that the results can be extrapolated to larger sizes, preventing that the scale affects the accuracy and reliability of the results. In the projected plant, the discharge of a reverse osmosis desalination plant and the effluent of a convencional tertiary treatment of a wastewater plant, go through a forward osmosis module, and then through a reverse osmosis, in order to open the possibility of increasing potable water production. Both osmosis systems are provided with a physicochemical pretreatment (in order to obtain the required conditions for the membranes in both cases), and a chemical cleaning system. In all tests, it is used as a source of concentrated solution (salt water), the rejection of a rack of a conventional reverse osmosis seawater desalination. The source of fresh water makes the difference between two types of tests: test with the effluent from a tertiary treatment of a conventional wastewater treatment plant (these tests study the behavior of the membrane facing the fouling) and tests with permeate, which allow us to study the ideal behavior of the membrane. The results of the tests with brackish water show fouling problems, the flow rate through the membrane decreases with the time and this effect is increased with water temperature. This phenomenon causes the need for a modification of the pretreatment of the direct osmosis module. An ultrafiltration system is added to enable the membrane to present a stable behavior . The tests with permeate have made possible the study of the ideal behavior of the membrane and we have obtained the optimum operating conditions. We have achieved energy recovery rates of 1.6, which allows to move from a consumption of 2.44 kWh/m3 in a conventional train of reverse osmosis to 2.28 kWh / m3 if it is added the direct osmosis system. The goal of future researches is to achieve recovery rates of 1.9, which would allow to reach a consumption lower than 2 kWh/m3. This thesis concludes that the proposed process allows us to take a further step in the reduction of the energy consumption in desalination. We must also add the mitigation of the brine discharge effects on the marine environment, due to the reduction of the flow and salinity of the discharge. This is also applicable to existing plants, and it suggests important economic benefits to new plants that will be built with this design.
Resumo:
The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound
Resumo:
Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL-1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1-0.2 mu m2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.