895 resultados para Computer supported collaborative work
Resumo:
In order to gain a better understanding of online conceptual collaborative design processes this paper investigates how student designers make use of a shared virtual synchronous environment when engaged in conceptual design. The software enables users to talk to each other and share sketches when they are remotely located. The paper describes a novel methodology for observing and analysing collaborative design processes by adapting the concepts of grounded theory. Rather than concentrating on narrow aspects of the final artefacts, emerging “themes” are generated that provide a broader picture of collaborative design process and context descriptions. Findings on the themes of “grounding – mutual understanding” and “support creativity” complement findings from other research, while important themes associated with “near-synchrony” have not been emphasised in other research. From the study, a series of design recommendations are made for the development of tools to support online computer-supported collaborative work in design using a shared virtual environment.
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
This paper describes a novel methodology for observing and analysing collaborative design by using the concepts of cognitive dimensions related to concept-based misfit analysis. The study aims at gaining an insight into support for creative practice of graphical communication in collaborative design processes of designers while sketching within a shared white board and audio conferencing environment. Empirical data on design processes have been obtained from observation of groups of student designers solving an interior space-planning problem of a lounge-diner in a shared virtual environment. The results of the study provide recommendations for the design and development of interactive systems to support such collaborative design activities.
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
The current understanding of students’ group metacognition is limited. The research on metacognition has focused mainly on the individual student. The aim of this study was to address the void by developing a conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments. An initial conceptual framework based on the literature from metacognition, cooperative learning, cooperative group metacognition, and computer supported collaborative learning was used to inform the study. In order to achieve the study aim, a design research methodology incorporating two cycles was used. The first cycle focused on the within-group metacognition for sixteen groups of primary school students working together around the computer; the second cycle included between-group metacognition for six groups of primary school students working together on the Knowledge Forum® CSCL environment. The study found that providing groups with group metacognitive scaffolds resulted in groups planning, monitoring, and evaluating the task and team aspects of their group work. The metacognitive scaffolds allowed students to focus on how their group was completing the problem-solving task and working together as a team. From these findings, a revised conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments was generated.
Resumo:
This paper presents recent research into the functions and value of sketch outputs during computer supported collaborative design. Sketches made primarily exploiting whiteboard technology are shown to support subjects engaged in remote collaborative design, particularly when constructed in ‘nearsynchronous’ communication. The authors define near-synchronous communication and speculate that it is compatible with the reflective and iterative nature of design activity. There appears to be significant similarities between the making of sketches in near-synchronous remote collaborative design and those made on paper in more traditional face-to-face settings With the current increase in the use of computer supported collaborative working (CSCW) in undergraduate and postgraduate design education it is proposed that sketches and sketching can make important contributions to design learning in this context
Resumo:
This research describes the development of a groupware system which adds security services to a Computer Supported Cooperative Work system operating over the Internet. The security services use cryptographic techniques to provide a secure access control service and an information protection service. These security services are implemented as a protection layer for the groupware system. These layers are called External Security Layer (ESL) and Internal Security Layer (ISL) respectively. The security services are sufficiently flexible to allow the groupware system to operate in both synchronous and asynchronous modes. The groupware system developed - known as Secure Software Inspection Groupware (SecureSIG) - provides security for a distributed group performing software inspection. SecureSIG extends previous work on developing flexible software inspection groupware (FlexSIG) Sahibuddin, 1999). The SecureSIG model extends the FlexSIG model, and the prototype system was added to the FlexSIG prototype. The prototype was built by integrating existing software, communication and cryptography tools and technology. Java Cryptography Extension (JCE) and Internet technology were used to build the prototype. To test the suitability and transparency of the system, an evaluation was conducted. A questionnaire was used to assess user acceptability.
Resumo:
Remote networked collaboration with business model documentation has many communication problems. The aim of this project is to solve some of these communication problems by using digital 3D representations of human visual cues. Results from this project increased our understanding of the role and effects of visual cues in remote collaboration, specifically for validating business process models. Technology designs to support such cues across a distance have been proposed in this thesis with qualitative and quantitative methods of analysis being combined to analyse the impact of these cues on the communication, coordination and performance of a team collaborating remotely.
Resumo:
Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications.
Resumo:
Management of collaborative business processes that span multiple business entities has emerged as a key requirement for business success. These processes are embedded in sets of rules describing complex message-based interactions between parties such that if a logical expression defined on the set of received messages is satisfied, one or more outgoing messages are dispatched. The execution of these processes presents significant challenges since each contentrich message may contribute towards the evaluation of multiple expressions in different ways and the sequence of message arrival cannot be predicted. These challenges must be overcome in order to develop an efficient execution strategy for collaborative processes in an intensive operating environment with a large number of rules and very high throughput of messages. In this paper, we present a discussion on issues relevant to the evaluation of such expressions and describe a basic query-based method for this purpose, including suggested indexes for improved performance. We conclude by identifying several potential future research directions in this area. © 2010 IEEE. All rights reserved
Thinking like Disney: Supporting the Disney method using ambient feedback based on group performance
Resumo:
The Disney method is a collaborative creativity technique that uses three roles - dreamer, realist and critic - to facilitate the consideration of different perspectives on a topic. Especially for novices it is important to obtain guidance in applying this method. One way is providing groups with a trained moderator. However, feedback about the group’s behavior might interrupt the flow of the idea finding process. We built and evaluated a system that provides ambient feedback to a group about the distribution of their statements among the three roles. Our preliminary field study indicates that groups supported by the system contribute more and roles are used in a more balanced way while the visualization does not disrupt the group work.
Resumo:
Estudiar la aplicabilidad de t??cnicas CSCW (Computer Supported Collaborative Work) en el trabajo diario, tanto en un aula, como en educaci??n a distancia. Analizar la idoneidad de las distintas plataformas de redes subyacentes, sistemas operativos, etc., as?? como estudiar otros aspectos de CSCW, como seguridad y registro de usuarios, ergonom??a... Dise??ar y desarrollar el prototipo ya que es necesario tener una aplicaci??n software que pudiera implantarse cuanto antes y con el m??ximo nivel de funcionalidad. Comparar el rendimiento de ordenadores basados en l??piz, con los ordenadores tradicionales port??tiles o de sobremesa ya que deben probarse nuevos m??todos de interacci??n con los ordenadores. Se pretende estudiar los problemas de CSCW (concurrencias, coordinaci??n, derechos,...) asociados al car??cter recursivo de la escritura y la interacci??n entre un grupo peque??o de estudiantes y el profesor, creando as?? una clase electr??nica. Se decide crear un sistema que pueda servir de apoyo a los alumnos de la asignatura 'T??cnica de escritura' impartido en la Facultad de Educaci??n. Se estudia la aplicaci??n de los ordenadores y las redes como elementos de apoyo a la ense??anza, especialmente al aprendizaje de la composici??n escrita, tanto de forma individual, como de forma cooperativa, incluyendo los m??todos de an??lisis de los textos generados por los alumnos. Se hace una rese??a hist??rica del Trabajo Coperativo Soportado por Ordenador (CSCW) present??ndose las distintas clasificaciones y arquitecturas existentes para estos sistemas, vi??ndose las caracter??sticas que las difeencian y haciendo una comparaci??n con los del sistema propuesto. Se tratan las interfaces multiusuario y sus implicaciones de dise??o, comentando los distintos problemas que surgen cuando hay que implementar un sistema CSCW y describi??ndose las soluciones adoptadas. Durante los dos a??os de utilizaci??n del sistema como apoyo a la signatura 'T??cnicas de escritura' han ido surgiendo distintos problemas tanto del tipo funcional, como inform??tico y-o telem??tico, cuyas soluciones m??s importantes han sido: consciencia del espacio de trabajo compartido, implementaci??n de roles y organizaci??n del trabajo en las fases cooperativas, soporte adecuado para la comunicaci??n, almacenamiento de la informaci??n generada por la interfaz basada en l??piz electr??nico, almacenamiento y recupaeraci??n del trabajo de sesiones anteriores y tama??o de cada ventana de trabajo. En la presente tesis se ha dise??ado e implantado un nuevo sistema CSCW basado en una interfaz de l??piz electr??nico para la ense??anza y aprendizaje de la composici??n de textos. El sistema, llamado PENCACOLAS (PEN Computer Aided Composing COLlAborative System) permite la interacci??n entre alumnos (grupos de 2 ?? 3) y la supervisi??n e interacci??n con el profesor, posibilita el paso del alumno por las distintas fases que subyacen en el proceso de composici??n de un documento, dota tanto al profesor como a los alumnos de una interfaz que les permite visualizar el trabajo de los dem??s e intervenir en ciertas circunstancias, permite la creaci??n de las llamadas aulas virtuales.
Resumo:
The work described in this thesis aims to support the distributed design of integrated systems and considers specifically the need for collaborative interaction among designers. Particular emphasis was given to issues which were only marginally considered in previous approaches, such as the abstraction of the distribution of design automation resources over the network, the possibility of both synchronous and asynchronous interaction among designers and the support for extensible design data models. Such issues demand a rather complex software infrastructure, as possible solutions must encompass a wide range of software modules: from user interfaces to middleware to databases. To build such structure, several engineering techniques were employed and some original solutions were devised. The core of the proposed solution is based in the joint application of two homonymic technologies: CAD Frameworks and object-oriented frameworks. The former concept was coined in the late 80's within the electronic design automation community and comprehends a layered software environment which aims to support CAD tool developers, CAD administrators/integrators and designers. The latter, developed during the last decade by the software engineering community, is a software architecture model to build extensible and reusable object-oriented software subsystems. In this work, we proposed to create an object-oriented framework which includes extensible sets of design data primitives and design tool building blocks. Such object-oriented framework is included within a CAD Framework, where it plays important roles on typical CAD Framework services such as design data representation and management, versioning, user interfaces, design management and tool integration. The implemented CAD Framework - named Cave2 - followed the classical layered architecture presented by Barnes, Harrison, Newton and Spickelmier, but the possibilities granted by the use of the object-oriented framework foundations allowed a series of improvements which were not available in previous approaches: - object-oriented frameworks are extensible by design, thus this should be also true regarding the implemented sets of design data primitives and design tool building blocks. This means that both the design representation model and the software modules dealing with it can be upgraded or adapted to a particular design methodology, and that such extensions and adaptations will still inherit the architectural and functional aspects implemented in the object-oriented framework foundation; - the design semantics and the design visualization are both part of the object-oriented framework, but in clearly separated models. This allows for different visualization strategies for a given design data set, which gives collaborating parties the flexibility to choose individual visualization settings; - the control of the consistency between semantics and visualization - a particularly important issue in a design environment with multiple views of a single design - is also included in the foundations of the object-oriented framework. Such mechanism is generic enough to be also used by further extensions of the design data model, as it is based on the inversion of control between view and semantics. The view receives the user input and propagates such event to the semantic model, which evaluates if a state change is possible. If positive, it triggers the change of state of both semantics and view. Our approach took advantage of such inversion of control and included an layer between semantics and view to take into account the possibility of multi-view consistency; - to optimize the consistency control mechanism between views and semantics, we propose an event-based approach that captures each discrete interaction of a designer with his/her respective design views. The information about each interaction is encapsulated inside an event object, which may be propagated to the design semantics - and thus to other possible views - according to the consistency policy which is being used. Furthermore, the use of event pools allows for a late synchronization between view and semantics in case of unavailability of a network connection between them; - the use of proxy objects raised significantly the abstraction of the integration of design automation resources, as either remote or local tools and services are accessed through method calls in a local object. The connection to remote tools and services using a look-up protocol also abstracted completely the network location of such resources, allowing for resource addition and removal during runtime; - the implemented CAD Framework is completely based on Java technology, so it relies on the Java Virtual Machine as the layer which grants the independence between the CAD Framework and the operating system. All such improvements contributed to a higher abstraction on the distribution of design automation resources and also introduced a new paradigm for the remote interaction between designers. The resulting CAD Framework is able to support fine-grained collaboration based on events, so every single design update performed by a designer can be propagated to the rest of the design team regardless of their location in the distributed environment. This can increase the group awareness and allow a richer transfer of experiences among them, improving significantly the collaboration potential when compared to previously proposed file-based or record-based approaches. Three different case studies were conducted to validate the proposed approach, each one focusing one a subset of the contributions of this thesis. The first one uses the proxy-based resource distribution architecture to implement a prototyping platform using reconfigurable hardware modules. The second one extends the foundations of the implemented object-oriented framework to support interface-based design. Such extensions - design representation primitives and tool blocks - are used to implement a design entry tool named IBlaDe, which allows the collaborative creation of functional and structural models of integrated systems. The third case study regards the possibility of integration of multimedia metadata to the design data model. Such possibility is explored in the frame of an online educational and training platform.
Resumo:
The convenience sample for this study was taken from an A.E.C. (Attestation of Collegial Studies) Communication course of the Continuing Education Technical Support Program. A key component of this course competency is for students to develop the skill to write business letters for various purposes and to apply the three-step writing process during the crafting of the correspondence. This is achieved with a number of writing assignments which are carried out by students working in teams and completing the writing assignments out-of-class. the out-of-class work was convened using the PrimaryPad program to complete two of the writing assignments, which formed the basis of the research. This research uses a case study design that employed a repeated measures method with two conditions (teacher scaffolding vs. no teacher scaffolding). The possibility of an order effect was controlled for by using a counterbalancing of treatment design. A post-treatment questionnaire was used to gather descriptive statistics.