990 resultados para Computer Mouse


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interactions using a standard computer mouse can be particularly difficult for novice and older adult users. Tasks that involve positioning the mouse over a target and double-clicking to initiate some action can be a real challenge for many users. Hence, this paper describes a study that investigates the double-click interactions of older and younger adults and presents data that can help inform the development of methods of assistance. Twelve older adults (mean age = 63.9 years) and 12 younger adults (mean age = 20.8 years) performed click and double-click target selections with a computer mouse. Initial results show that older users make approximately twice as many errors as younger users when attempting double-clicks. For both age groups, the largest proportion of errors was due to difficulties with keeping the cursor steady between button presses. Compared with younger adults, older adults experienced more difficulties with performing two button presses within a required time interval. Understanding these interactions better is a step towards improving accessibility, and may provide some suggestions for future directions of research in this area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates how people select items from a computer display using the mouse input device. The term computer mouse refers to a class of input devices which share certain features, but these may have different characteristics which influence the ways in which people use the device. Although task completion time is one of the most commonly used performance measures for input device evaluation, there is no consensus as to its definition. Furthermore most mouse studies fail to provide adequate assurances regarding its correct measurement.Therefore precise and accurate timing software were developed which permitted the recording of movement data which by means of automated analysis yielded the device movements made. Input system gain, an important task parameter, has been poorly defined and misconceptualized in most previous studies. The issue of gain has been clarified and investigated within this thesis. Movement characteristics varied between users and within users, even for the same task conditions. The variables of target size, movement amplitude, and experience exerted significant effects on performance. Subjects consistently undershot the target area. This may be a consequence of the particular task demands. Although task completion times indicated that mouse performance had stabilized after 132 trials the movement traces, even of very experienced users, indicated that there was still considerable room for improvement in performance, as indicated by the proportion of poorly made movements. The mouse input device was suitable for older novice device users, but they took longer to complete the experimental trials. Given the diversity and inconsistency of device movements, even for the same task conditions, caution is urged when interpreting averaged grouped data. Performance was found to be sensitive to; task conditions, device implementations, and experience in ways which are problematic for the theoretical descriptions of device movement, and limit the generalizability of such findings within this thesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gemstone Team MICE (Modifying and Improving Computer Ergonomics)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Point and click interactions using a mouse are an integral part of computer use for current desktop systems. Compared with younger users though, older adults experience greater difficulties performing cursor positioning tasks, and this can present limitations to using a computer easily and effectively. Target expansion is a technique for improving pointing performance, where the target dynamically grows as the cursor approaches. This has the advantage that targets conserve screen real estate in their unexpanded state, yet can still provide the benefits of a larger area to click on. This paper presents two studies of target expansion with older and younger participants, involving multidirectional point-select tasks with a computer mouse. Study 1 compares static versus expanding targets, and Study 2 compares static targets with three alternative techniques for expansion. Results show that expansion can improve times by up to 14%, and reduce error rates by up to 50%. Additionally, expanding targets are beneficial even when the expansion happens late in the movement, i.e. after the cursor has reached the expanded target area or even after it has reached the original target area. Participants’ subjective feedback on the target expansion are generally favorable, and this lends further support for the technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Freely available software has popularized “mousetracking” to study cognitive processing; this involves the on-line recording of cursor positions while participants move a computer mouse to indicate their choice. Movement trajectories of the cursor can then be reconstructed off-line to assess the efficiency of responding in time and across space. Here we focus on the process of selecting among alternative numerical responses. Several studies have recently measured the mathematical mind with cursor movements while people decided about number magnitude or parity, computed sums or differences, or simply located numbers on a number line. After some general methodological considerations about mouse tracking we discuss several conceptual concerns that become particularly evident when “mousing” the mathematical mind.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Supporting the forearm on the work surface during keyboard operation may increase comfort, decrease muscular load of the neck and shoulders, and decrease the time spent in ulnar deviation. Wrist rests are used widely in the workplace and are more commonly being incorporated in keyboard design. The aim of this study was to examine the effect of wrist rest use on wrist posture during forearm Support. A laboratory based, experimental study was conducted (subjects n = 15) to examine muscle activity and wrist Postures during keyboard and mouse tasks in each of' two conditions; wrist rest and no wrist rest. There were no significant differences for right wrist flexion/extension between use of a wrist rest and no wrist rest for keyboard or mouse use. Left wrist extension was significantly higher without a wrist rest than with a wrist rest during keyboard use (df = 14; t = 2.95; p = 0.01; d = 0.38). No differences with respect to use of a wrist rest were found for the left or right hand for ulnar deviation For keyboard or mouse use. There were no differences in muscle activity between the test conditions for keyboard use. Relevance to industry Wrist rests are used widely in the workplace and are more commonly being incorporated in keyboard design. Use of a wrist rest in conjunction with forearm support when using a conventional desk does not appear to have any impact on wrist posture or muscle activity during keyboard use. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cross-sectional survey of female office workers (n=333) was undertaken to determine the level of neck pain and disability (Neck Disability Index—NDI) and to explore the relationship between individual and workplace risk factors with the NDI score and the presence of pain. Workers reported nil (32%), mild (53%), moderate (14%) and severe (1%) neck pain. There were more risk factors associated with the NDI score than the presence of neck pain. The presence of neck pain was associated with a history of neck trauma (OR: 4.8), using a graduated lens (OR: 4.6), and negative affectivity (OR: 2.7) in the multiple regression model. Factors associated with higher NDI score were using the computer mouse for more than 6 h per day, higher negative affectivity, older age and an uncomfortable workstation. These results suggest that measuring the level of neck pain and disability rather than just the presence of neck pain provides more specific directives for the prevention and management of this disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Use of the hand is vital in working life due to the grabbing and pinching it performs. Spherical grip is the most commonly used, due to similarity to the gripping of a computer mouse. Knowledge of its execution and the involved elements is essential. Analysis of this exertion with surface electromyography devices (to register muscular activity) and accelerometer devices (to register movement values ) can provide multiple variables. Six subjects performed ball gripping and registered real-time electromyography (thenar region, hypothenar region, first dorsal interosseous, flexors of the wrist, flexor carpi ulnaris and extensors of the wrist muscles) and accelerometer (thumb, index, middle, ring, pinky and palm) values. The obtained data was resampled “R software” and processed “Matlab Script” based on an automatic numerical sequence recognition program. Electromyography values were normalized on the basis of maximum voluntary contraction, whilst modular values were calculated for the acceleration vector. After processing and analysing the obtained data and signal, it was possible to identify five stages of movement in accordance with the module vector from the palm. The statistical analysis of the variables was descriptive: average and standard deviations. The outcome variables focus on the variations of the modules of the vector (between the maximum and minimum values of each module and phase) and the maximum values of the standardized electromyography of each muscle. Analysis of movement through accelerometer and electromyography variables can give us an insight into the operation of spherical grip. The protocol and treatment data can be used as a system to complement existing assessments in the hand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poster is based on the following paper: C. Kwan and M. Betke. Camera Canvas: Image editing software for people with disabilities. In Proceedings of the 14th International Conference on Human Computer Interaction (HCI International 2011), Orlando, Florida, July 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This sheet written in English and Spanish compares pictures of everyday items to their equivalent in ounces and cups. Four dice equals 1 oz., a deck of cards equals 3 oz., a golf ball equals 1/4 cup, a computer mouse equals 1/2 cup and a baseball equals 1 cup.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de redes de Comunicação e Multimédia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectif principal de la présente thèse était de déterminer les facteurs susceptibles d’influencer l’efficacité des processus de contrôle en ligne des mouvements d’atteinte manuelle. De nos jours, les mouvements d’atteinte manuelle réalisés dans un environnement virtuel (déplacer une souris d’ordinateur pour contrôler un curseur à l’écran, par exemple) sont devenus chose commune. Par comparaison aux mouvements réalisés en contexte naturel (appuyer sur le bouton de mise en marche de l’ordinateur), ceux réalisés en contexte virtuel imposent au système nerveux central des contraintes importantes parce que l’information visuelle et proprioceptive définissant la position de l’effecteur n’est pas parfaitement congruente. Par conséquent, la présente thèse s’articule autour des effets d’un contexte virtuel sur le contrôle des mouvements d’atteinte manuelle. Dans notre premier article, nous avons tenté de déterminer si des facteurs tels que (a) la quantité de pratique, (b) l’orientation du montage virtuel (aligné vs. non-aligné) ou encore (c) l’alternance d’un essai réalisé avec et sans la vision de l’effecteur pouvaient augmenter l’efficacité des processus de contrôle en ligne de mouvement réalisés en contexte virtuel. Ces facteurs n’ont pas influencé l’efficacité des processus de contrôle de mouvements réalisés en contexte virtuel, suggérant qu’il est difficile d’optimiser le contrôle des mouvements d’atteinte manuelle lorsque ceux-ci sont réalisés dans un contexte virtuel. L’un des résultats les plus surprenants de cette étude est que nous n’avons pas rapporté d’effet concernant l’orientation de l’écran sur la performance des participants, ce qui était en contradiction avec la littérature existante sur ce sujet. L’article 2 avait pour but de pousser plus en avant notre compréhension du contrôle du mouvement réalisé en contexte virtuel et naturel. Dans le deuxième article, nous avons mis en évidence les effets néfastes d’un contexte virtuel sur le contrôle en ligne des mouvements d’atteinte manuelle. Plus précisément, nous avons observé que l’utilisation d’un montage non-aligné (écran vertical/mouvement sur un plan horizontal) pour présenter l’information visuelle résultait en une importante diminution de la performance comparativement à un montage virtuel aligné et un montage naturel. Nous avons aussi observé une diminution de la performance lorsque les mouvements étaient réalisés dans un contexte virtuel aligné comparativement à un contexte naturel. La diminution de la performance notée dans les deux conditions virtuelles s’expliquait largement par une réduction de l’efficacité des processus de contrôle en ligne. Nous avons donc suggéré que l’utilisation d’une représentation virtuelle de la main introduisait de l’incertitude relative à sa position dans l’espace. Dans l’article 3, nous avons donc voulu déterminer l’origine de cette incertitude. Dans ce troisième article, deux hypothèses étaient à l’étude. La première suggérait que l’augmentation de l’incertitude rapportée dans le contexte virtuel de la précédente étude était due à une perte d’information visuelle relative à la configuration du bras. La seconde suggérait plutôt que l’incertitude provenait de l’information visuelle et proprioceptive qui n’est pas parfaitement congruente dans un contexte virtuel comparativement à un contexte naturel (le curseur n’est pas directement aligné avec le bout du doigt, par exemple). Les données n’ont pas supporté notre première hypothèse. Plutôt, il semble que l’incertitude soit causée par la dissociation de l’information visuelle et proprioceptive. Nous avons aussi démontré que l’information relative à la position de la main disponible sur la base de départ influence largement les processus de contrôle en ligne, même lorsque la vision de l’effecteur est disponible durant le mouvement. Ce résultat suggère que des boucles de feedback interne utilisent cette information afin de moduler le mouvement en cours d’exécution.