904 resultados para Computed tomography angiography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Because of their similar visual appearance, differentiation of left ventricular thrombotic material and myocardial wall can be difficult in contrast-enhanced coronary computed tomography (CT) angiography. OBJECTIVE: We identified typical thrombi attenuation of left ventricular thrombi with the use of CT measurement. METHODS: Over a time period of 6 years; we retrospectively identified 31 patients who showed a left ventricular thrombus in CT angiography datasets. Patients underwent routine contrast cardiac CT to investigate coronary artery disease. CT attenuation of each thrombus was assessed in the 4-chamber view. CT densities were also determined in the ascending aorta, left ventricle, and myocardial wall both in the mid-septal and mid-lateral segments. The mean CT attenuation of thrombi and the difference between attenuation in thrombi, left ventricular cavity, and myocardial wall were determined. The ratio of attenuation values in thrombus versus aorta and myocardium versus aorta were also determined. RESULTS: Mean (+/- SD) CT attenuation of all left ventricular thrombi in 31 patients was 43.2 +/- 15.3 HU (range, 25-80 HU). Mean CT densities of septal and lateral myocardial wall were 102.9 +/- 23.1 HU (range, 63-155 HU) and 99.3 +/- 28.7 HU (range, 72-191 HU), respectively, and were thus significantly higher than the CT attenuation of thrombi (P < 0.001). A threshold of 65 HU yielded a sensitivity, specificity, and positive and negative predictive values of 94%, 97%, 94%, and 97%, respectively, to differentiate thrombus from the myocardial wall. The mean ratio between CT attenuation of thrombus and CT attenuation within the ascending aorta was 0.11 +/- 0.05 (range, 0.04-0.23), which was significantly lower compared with the mean ratio between CT attenuation of the myocardial wall and the CT attenuation within the ascending aorta. CONCLUSION: CT attenuation within left ventricular thrombi was significantly lower than myocardial attenuation in CT angiography datasets. Assessment of CT attenuation may contribute to the differentiation of thrombi. (C) 2012 Society of Cardiovascular Computed Tomography. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the determination of brain death (BD) in potential organ donors, confirmatory tests that show cessation of cerebral circulation are used in many countries. Conventional angiography is considered the golden standard among these ancillary examinations. In recent years other angiographic techniques such as CT angiography (CTA) have been increasingly employed to establish the diagnosis of BD. We report our experience with CTA in this setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new radiation dose-saving technique for noninvasive coronary artery imaging with computed tomography (CT) is available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This retrospective study was conducted to determine whether a low-volume contrast medium protocol provides sufficient enhancement for 64-detector computed tomography angiography (CTA) in patients with aortoiliac aneurysms. METHODS: Evaluated were 45 consecutive patients (6 women; mean age, 72 +/- 6 years) who were referred for aortoiliac computed tomography angiography between October 2005 and January 2007. Group A (22 patients; creatinine clearance, 64.2 +/- 8.1 mL/min) received 50 mL of the contrast agent. Group B (23 patients; creatinine clearance, 89.4 +/- 7.3 mL/min) received 100 mL of the contrast agent. The injection rate was 3.5 mL/s, followed by 30 mL of saline at 3.5 mL/s. Studies were performed on the same 64-detector computed tomography scanner using a real-time bolus-tracking technique. Quantitative analysis was performed by determination of mean vascular attenuation at 10 regions of interest from the suprarenal aorta to the common femoral artery by one reader blinded to type and amount of contrast agent and compared using the Student t test. Image quality according to a 4-point scale was assessed in consensus by two readers blinded to type and amount of contrast medium and compared using the Mann-Whitney test. Multivariable adjustments were performed using ordinal regression analysis. RESULTS: Mean total attenuation did not differ significantly between both groups (196.5 +/- 33.0 Hounsfield unit [HU] in group A and 203.1 +/- 44.2 HU in group B; P = .57 by univariate and P > .05 by multivariable analysis). Accordingly, attenuation at each region of interest was not significantly different (P > .35). Image quality was excellent or good in all patients. No significant differences in visual assessment were found comparing both contrast medium protocols (P > .05 by univariate and by multivariable analysis). CONCLUSIONS: Aortoiliac aneurysm imaging can be performed with substantially reduced amounts of contrast medium using 64-detector computed tomography angiography technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Measures to reduce radiation exposure and injected iodine mass are becoming more important with the widespread and often repetitive use of pulmonary CT angiography (CTA) in patients with suspected pulmonary embolism. In this retrospective study, we analyzed the capability of 2 low-kilovoltage CTA-protocols to achieve these goals. MATERIALS AND METHODS: Ninety patients weighing less than 100 kg were examined by a pulmonary CTA protocol using either 100 kVp (group A) or 80 kVp (group B). Volume and flow rate of contrast medium were reduced in group B (75 mL at 3 mL/s) compared with group A (100 mL at 4 mL/s). Attenuation was measured in the central and peripheral pulmonary arteries, and the contrast-to-noise ratios (CNR) were calculated. Entrance skin dose was estimated by measuring the surface dose in an ovoid-cylindrical polymethyl methacrylate chest phantom with 2 various dimensions corresponding to the range of chest diameters in our patients. Quantitative image parameters, estimated effective dose, and skin dose in both groups were compared by the t test. Arterial enhancement, noise, and overall quality were independently assessed by 3 radiologists, and results were compared between the groups using nonparametric tests. RESULTS: Mean attenuation in the pulmonary arteries in group B (427.6 +/- 116 HU) was significantly higher than in group A (342.1 +/- 87.7 HU; P < 0.001), whereas CNR showed no difference (group A, 20.6 +/- 7.3 and group B, 22.2 +/- 7.1; P = 0.302). Effective dose was lower by more than 40% with 80 kVp (1.68 +/- 0.23 mSv) compared with 100 kVp (2.87 +/- 0.88 mSv) (P < 0.001). Surface dose was significantly lower at 80 kVp compared with 100 kVp at both phantom dimensions (2.75 vs. 3.22 mGy; P = 0.027 and 2.22 vs. 2.73 mGy; P = 0.005, respectively). Image quality did not differ significantly between the groups (P = 0.151). CONCLUSIONS: Using 80 kVp in pulmonary CTA permits reduced patient exposure by 40% and CM volume by 25% compared with 100 kVp without deterioration of image quality in patients weighing less than 100 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The accuracy of CT pulmonary angiography (CTPA) in detecting or excluding pulmonary embolism has not yet been assessed in patients with high body weight (BW). METHODS This retrospective study involved CTPAs of 114 patients weighing 75-99 kg and those of 123 consecutive patients weighing 100-150 kg. Three independent blinded radiologists analyzed all examinations in randomized order. Readers' data on pulmonary emboli were compared with a composite reference standard, comprising clinical probability, reference CTPA result, additional imaging when performed and 90-day follow-up. Results in both BW groups and in two body mass index (BMI) groups (BMI <30 kg/m(2) and BMI ≥ 30 kg/m(2), i.e., non-obese and obese patients) were compared. RESULTS The prevalence of pulmonary embolism was not significantly different in the BW groups (P=1.0). The reference CTPA result was positive in 23 of 114 patients in the 75-99 kg group and in 25 of 123 patients in the ≥ 100 kg group, respectively (odds ratio, 0.991; 95% confidence interval, 0.501 to 1.957; P=1.0). No pulmonary embolism-related death or venous thromboembolism occurred during follow-up. The mean accuracy of three readers was 91.5% in the 75-99 kg group and 89.9% in the ≥ 100 kg group (odds ratio, 1.207; 95% confidence interval, 0.451 to 3.255; P=0.495), and 89.9% in non-obese patients and 91.2% in obese patients (odds ratio, 0.853; 95% confidence interval, 0.317 to 2.319; P=0.816). CONCLUSION The diagnostic accuracy of CTPA in patients weighing 75-99 kg or 100-150 kg proved not to be significantly different.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This study sought to evaluate the diagnostic accuracy of coronary binary in-stent restenosis (ISR) with angiography using 64-slice multislice computed tomography coronary angiography (CTCA) compared with invasive coronary angiography (ICA). BACKGROUND: A noninvasive detection of ISR would result in an easier and safer way to conduct patient follow-up. METHODS: We performed CTCA in 81 patients after stent implantation, and 125 stented lesions were scanned. Two sets of images were reconstructed with different types of convolution kernels. On CTCA, neointimal proliferation was visually evaluated according to luminal contrast attenuation inside the stent. Lesions were graded as follows: grade 1, none or slight neointimal proliferation; grade 2, neointimal proliferation with no significant stenosis (<50%); grade 3, neointimal proliferation with moderate stenosis (> or =50%); and grade 4, neointimal proliferation with severe stenosis (> or =75%). Grades 3 and 4 were considered binary ISR. The diagnostic accuracy of CTCA compared with ICA was evaluated. RESULTS: By ICA, 24 ISRs were diagnosed. Sensitivity, specificity, positive predictive value, and negative predictive value were 92%, 81%, 54%, and 98% for the overall population, whereas values were 91%, 93%, 77%, and 98% when excluding unassessable segments (15 segments, 12%). For assessable segments, CTCA correctly diagnosed 20 of the 22 ISRs detected by ICA. Six lesions without ISR were overestimated as ISR by CTCA. As the grade of neointimal proliferation by CTCA increases, the median value of percent diameter stenosis increased linearly. CONCLUSIONS: Binary ISR can be excluded with high probability by CTCA, with a moderate rate of false-positive results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Multislice computed tomography (MSCT) is a promising noninvasive method of detecting coronary artery disease (CAD). However, most data have been obtained in selected series of patients. The purpose of the present study was to investigate the accuracy of 64-slice MSCT (64 MSCT) in daily practice, without any patient selection. METHODS AND RESULTS: Using 64-slice MSCT coronary angiography (CTA), 69 consecutive patients, 39 (57%) of whom had previously undergone stent implantation, were evaluated. The mean heart rate during scan was 72 beats/min, scan time 13.6 s and the amount of contrast media 72 mL. The mean time span between invasive coronary angiography (ICAG) and CTA was 6 days. Significant stenosis was defined as a diameter reduction of > 50%. Of 966 segments, 884 (92%) were assessable. Compared with ICAG, the sensitivity of CTA to diagnose significant stenosis was 90%, specificity 94%, positive predictive value (PPV) 89% and negative predictive value (NPV) 95%. With regard to 58 stented lesions, the sensitivity, specificity, PPV and NPV were 93%, 96%, 87% and 98%, respectively. On the patient-based analysis, the sensitivity, specificity, PPV and NPV of CTA to detect CAD were 98%, 86%, 98% and 86%, respectively. Eighty-two (8%) segments were not assessable because of irregular rhythm, calcification or tachycardia. CONCLUSION: Sixty-four-MSCT has a high accuracy for the detection of significant CAD in an unselected patient population and therefore can be considered as a valuable noninvasive technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technological development of fast multi-sectional, helical computed tomography (CT) scanners has allowed computed tomography perfusion (CTp) and angiography (CTA) in evaluating acute ischemic stroke. This study focuses on new multidetector computed tomography techniques, namely whole-brain and first-pass CT perfusion plus CTA of carotid arteries. Whole-brain CTp data is acquired during slow infusion of contrast material to achieve constant contrast concentration in the cerebral vasculature. From these data quantitative maps are constructed of perfused cerebral blood volume (pCBV). The probability curve of cerebral infarction as a function of normalized pCBV was determined in patients with acute ischemic stroke. Normalized pCBV, expressed as a percentage of contralateral normal brain pCBV, was determined in the infarction core and in regions just inside and outside the boundary between infarcted and noninfarcted brain. Corresponding probabilities of infarction were 0.99, 0.96, and 0.11, R² was 0.73, and differences in perfusion between core and inner and outer bands were highly significant. Thus a probability of infarction curve can help predict the likelihood of infarction as a function of percentage normalized pCBV. First-pass CT perfusion is based on continuous cine imaging over a selected brain area during a bolus injection of contrast. During its first passage, contrast material compartmentalizes in the intravascular space, resulting in transient tissue enhancement. Functional maps such as cerebral blood flow (CBF), and volume (CBV), and mean transit time (MTT) are then constructed. We compared the effects of three different iodine concentrations (300, 350, or 400 mg/mL) on peak enhancement of normal brain tissue and artery and vein, stratified by region-of-interest (ROI) location, in 102 patients within 3 hours of stroke onset. A monotonic increasing peak opacification was evident at all ROI locations, suggesting that CTp evaluation of patients with acute stroke is best performed with the highest available concentration of contrast agent. In another study we investigated whether lesion volumes on CBV, CBF, and MTT maps within 3 hours of stroke onset predict final infarct volume, and whether all these parameters are needed for triage to intravenous recombinant tissue plasminogen activator (IV-rtPA). The effect of IV-rtPA on the affected brain by measuring salvaged tissue volume in patients receiving IV-rtPA and in controls was investigated also. CBV lesion volume did not necessarily represent dead tissue. MTT lesion volume alone can serve to identify the upper size limit of the abnormally perfused brain, and those with IV-rtPA salvaged more brain than did controls. Carotid CTA was compared with carotid DSA in grading of stenosis in patients with stroke symptoms. In CTA, the grade of stenosis was determined by means of axial source and maximum intensity projection (MIP) images as well as a semiautomatic vessel analysis. CTA provides an adequate, less invasive alternative to conventional DSA, although tending to underestimate clinically relevant grades of stenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate a diagnostic strategy for pulmonary embolism that combined clinical assessment, plasma D-dimer measurement, lower limb venous ultrasonography, and helical computed tomography (CT). METHODS: A cohort of 965 consecutive patients presenting to the emergency departments of three general and teaching hospitals with clinically suspected pulmonary embolism underwent sequential noninvasive testing. Clinical probability was assessed by a prediction rule combined with implicit judgment. All patients were followed for 3 months. RESULTS: A normal D-dimer level (&lt;500 microg/L by a rapid enzyme-linked immunosorbent assay) ruled out venous thromboembolism in 280 patients (29%), and finding a deep vein thrombosis by ultrasonography established the diagnosis in 92 patients (9.5%). Helical CT was required in only 593 patients (61%) and showed pulmonary embolism in 124 patients (12.8%). Pulmonary embolism was considered ruled out in the 450 patients (46.6%) with a negative ultrasound and CT scan and a low-to-intermediate clinical probability. The 8 patients with a negative ultrasound and CT scan despite a high clinical probability proceeded to pulmonary angiography (positive: 2; negative: 6). Helical CT was inconclusive in 11 patients (pulmonary embolism: 4; no pulmonary embolism: 7). The overall prevalence of pulmonary embolism was 23%. Patients classified as not having pulmonary embolism were not anticoagulated during follow-up and had a 3-month thromboembolic risk of 1.0% (95% confidence interval: 0.5% to 2.1%). CONCLUSION: A noninvasive diagnostic strategy combining clinical assessment, D-dimer measurement, ultrasonography, and helical CT yielded a diagnosis in 99% of outpatients suspected of pulmonary embolism, and appeared to be safe, provided that CT was combined with ultrasonography to rule out the disease.