964 resultados para Computational model of emotion
Resumo:
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.
Resumo:
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.
Resumo:
Adaptive systems use feedback as a key strategy to cope with uncertainty and change in their environments. The information fed back from the sensorimotor loop into the control architecture can be used to change different elements of the controller at four different levels: parameters of the control model, the control model itself, the functional organization of the agent and the functional components of the agent. The complexity of such a space of potential configurations is daunting. The only viable alternative for the agent ?in practical, economical, evolutionary terms? is the reduction of the dimensionality of the configuration space. This reduction is achieved both by functionalisation —or, to be more precise, by interface minimization— and by patterning, i.e. the selection among a predefined set of organisational configurations. This last analysis let us state the central problem of how autonomy emerges from the integration of the cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. In this paper we will show a general model of how the emotional biological systems operate following this theoretical analysis and how this model is also of applicability to a wide spectrum of artificial systems.
Resumo:
Adaptive agents use feedback as a key strategy to cope with un- certainty and change in their environments. The information fed back from the sensorimotor loop into the control subsystem can be used to change four different elements of the controller: parameters associated to the control model, the control model itself, the functional organization of the agent and the functional realization of the agent. There are many change alternatives and hence the complexity of the agent’s space of potential configurations is daunting. The only viable alternative for space- and time-constrained agents —in practical, economical, evolutionary terms— is to achieve a reduction of the dimensionality of this configuration space. Emotions play a critical role in this reduction. The reduction is achieved by func- tionalization, interface minimization and by patterning, i.e. by selection among a predefined set of organizational configurations. This analysis lets us state how autonomy emerges from the integration of cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. Emotion-based morphofunctional systems are able to exhibit complex adaptation patterns at a reduced cognitive cost. In this article we show a general model of how emotion supports functional adaptation and how the emotional biological systems operate following this theoretical model. We will also show how this model is also of applicability to the construction of a wide spectrum of artificial systems1.
Resumo:
The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. In robotics a similar role has been played by modules that fit point cloud data to the superquadric family of shapes and its various extensions. We developed a model of shape tuning in AIP based on cosine tuning to superquadric parameters. However, the model did not fit the data well, and we also found that it was difficult to accurately reproduce these parameters using neural networks with the appropriate inputs (modelled on the caudal intraparietal area, CIP). The latter difficulty was related to the fact that there are large discontinuities in the superquadric parameters between very similar shapes. To address these limitations we adopted an alternative shape parameterization based on an Isomap nonlinear dimension reduction. The Isomap was built using gradients and curvatures of object surface depth. This alternative parameterization was low-dimensional (like superquadrics), but data-driven (similar to an alternative clustering approach that is also sometimes used in robotics) and lacked large discontinuities. Isomaps with 16 or more dimensions reproduced the AIP data fairly well. Moreover, we found that the Isomap parameters could be approximated from CIP-like input much more accurately than the superquadric parameters. We conclude that Isomaps, or perhaps alternative dimension reductions of CIP signals, provide a promising model of AIP tuning. We have now started to integrate our model with a robot hand, to explore the efficacy of Isomap shape reductions in grasp planning. Future work will consider dynamics of spike responses and integration with related visual and motor area models.
Resumo:
This paper presents an approach to the belief system based on a computational framework in three levels: first, the logic level with the definition of binary local rules, second, the arithmetic level with the definition of recursive functions and finally the behavioural level with the definition of a recursive construction pattern. Social communication is achieved when different beliefs are expressed, modified, propagated and shared through social nets. This approach is useful to mimic the belief system because the defined functions provide different ways to process the same incoming information as well as a means to propagate it. Our model also provides a means to cross different beliefs so, any incoming information can be processed many times by the same or different functions as it occurs is social nets.
Resumo:
In this article we present a model of organization of a belief system based on a set of binary recursive functions that characterize the dynamic context that modifies the beliefs. The initial beliefs are modeled by a set of two-bit words that grow, update, and generate other beliefs as the different experiences of the dynamic context appear. Reason is presented as an emergent effect of the experience on the beliefs. The system presents a layered structure that allows a functional organization of the belief system. Our approach seems suitable to model different ways of thinking and to apply to different realistic scenarios such as ideologies.
Resumo:
This work examines prosody modelling for the Standard Yorùbá (SY) language in the context of computer text-to-speech synthesis applications. The thesis of this research is that it is possible to develop a practical prosody model by using appropriate computational tools and techniques which combines acoustic data with an encoding of the phonological and phonetic knowledge provided by experts. Our prosody model is conceptualised around a modular holistic framework. The framework is implemented using the Relational Tree (R-Tree) techniques (Ehrich and Foith, 1976). R-Tree is a sophisticated data structure that provides a multi-dimensional description of a waveform. A Skeletal Tree (S-Tree) is first generated using algorithms based on the tone phonological rules of SY. Subsequent steps update the S-Tree by computing the numerical values of the prosody dimensions. To implement the intonation dimension, fuzzy control rules where developed based on data from native speakers of Yorùbá. The Classification And Regression Tree (CART) and the Fuzzy Decision Tree (FDT) techniques were tested in modelling the duration dimension. The FDT was selected based on its better performance. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration and intonation, using different techniques and their subsequent integration. Our approach provides us with a flexible and extendible model that can also be used to implement, study and explain the theory behind aspects of the phenomena observed in speech prosody.
Resumo:
In this paper we present the design and analysis of an intonation model for text-to-speech (TTS) synthesis applications using a combination of Relational Tree (RT) and Fuzzy Logic (FL) technologies. The model is demonstrated using the Standard Yorùbá (SY) language. In the proposed intonation model, phonological information extracted from text is converted into an RT. RT is a sophisticated data structure that represents the peaks and valleys as well as the spatial structure of a waveform symbolically in the form of trees. An initial approximation to the RT, called Skeletal Tree (ST), is first generated algorithmically. The exact numerical values of the peaks and valleys on the ST is then computed using FL. Quantitative analysis of the result gives RMSE of 0.56 and 0.71 for peak and valley respectively. Mean Opinion Scores (MOS) of 9.5 and 6.8, on a scale of 1 - -10, was obtained for intelligibility and naturalness respectively.
Resumo:
Urinary bladder diseases are a common problem throughout the world and often difficult to accurately diagnose. Furthermore, they pose a heavy financial burden on health services. Urinary bladder tissue from male pigs was spectrophotometrically measured and the resulting data used to calculate the absorption, transmission, and reflectance parameters, along with the derived coefficients of scattering and absorption. These were employed to create a "generic" computational bladder model based on optical properties, simulating the propagation of photons through the tissue at different wavelengths. Using the Monte-Carlo method and fluorescence spectra of UV and blue excited wavelength, diagnostically important biomarkers were modeled. Additionally, the multifunctional noninvasive diagnostics system "LAKK-M" was used to gather fluorescence data to further provide essential comparisons. The ultimate goal of the study was to successfully simulate the effects of varying excited radiation wavelengths on bladder tissue to determine the effectiveness of photonics diagnostic devices. With increased accuracy, this model could be used to reliably aid in differentiating healthy and pathological tissues within the bladder and potentially other hollow organs.
Resumo:
The research reported in this article is based on the Ph.D. project of Dr. RK, which was funded by the Scottish Informatics and Computer Science Alliance (SICSA). KvD acknowledges support from the EPSRC under the RefNet grant (EP/J019615/1).
Resumo:
Planning, navigation, and search are fundamental human cognitive abilities central to spatial problem solving in search and rescue, law enforcement, and military operations. Despite a wealth of literature concerning naturalistic spatial problem solving in animals, literature on naturalistic spatial problem solving in humans is comparatively lacking and generally conducted by separate camps among which there is little crosstalk. Addressing this deficiency will allow us to predict spatial decision making in operational environments, and understand the factors leading to those decisions. The present dissertation is comprised of two related efforts, (1) a set of empirical research studies intended to identify characteristics of planning, execution, and memory in naturalistic spatial problem solving tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial problem solving. The results of the behavioral studies indicate that problem space hierarchical representations are linear in shape, and that human solutions are produced according to multiple optimization criteria. The Mixed Criteria Model presented in this dissertation accounts for global and local human performance in a traditional and naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts hold implications for basic and applied science in domains such as problem solving, operations research, human-computer interaction, and artificial intelligence.
Resumo:
This study presents a computational parametric analysis of DME steam reforming in a large scale Circulating Fluidized Bed (CFB) reactor. The Computational Fluid Dynamic (CFD) model used, which is based on Eulerian-Eulerian dispersed flow, has been developed and validated in Part I of this study [1]. The effect of the reactor inlet configuration, gas residence time, inlet temperature and steam to DME ratio on the overall reactor performance and products have all been investigated. The results have shown that the use of double sided solid feeding system remarkable improvement in the flow uniformity, but with limited effect on the reactions and products. The temperature has been found to play a dominant role in increasing the DME conversion and the hydrogen yield. According to the parametric analysis, it is recommended to run the CFB reactor at around 300 °C inlet temperature, 5.5 steam to DME molar ratio, 4 s gas residence time and 37,104 ml gcat -1 h-1 space velocity. At these conditions, the DME conversion and hydrogen molar concentration in the product gas were both found to be around 80%.