981 resultados para Computational Fluid Mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les suspensivores ont la tâche importante de séparer les particules de l'eau. Bien qu'une grande gamme de morphologies existe pour les structures d'alimentation, elles sont pratiquement toutes constituées de rangées de cylindres qui interagissent avec leur environnement fluide. Le mécanisme de capture des particules utilisé dépend des contraintes morphologiques, des besoins énergétiques et des conditions d'écoulement. Comme nos objectifs étaient de comprendre ces relations, nous avons eu recours à des études de comparaison pour interpréter les tendances en nature et pour comprendre les conditions qui provoquent de nouveaux fonctionnements. Nous avons utilisé la dynamique des fluides numérique (computational fluid dynamics, CFD) pour créer des expériences contrôlées et pour simplifier les analyses. Notre première étude démontre que les coûts énergétiques associés au pompage dans les espaces petits sont élevés. De plus, le CFD suggère que les fentes branchiales des ptérobranches sont des structures rudimentaires, d'un ancêtre plus grande. Ce dernier point confirme l'hypothèse qu'un ver se nourrit par filtration tel que l'ancêtre des deuterostomes. Notre deuxième étude détermine la gamme du nombre de Reynolds number critique où la performance d'un filtre de balane change. Quand le Re est très bas, les différences morphologiques n'ont pas un grand effet sur le fonctionnement. Cependant, une pagaie devient une passoire lorsque le Re se trouve entre 1 et 3,5. Le CFD s’est dévoilé être un outil très utile qui a permis d’obtenir des détails sur les microfluides. Ces études montrent comment la morphologie et les dynamiques des fluides interagissent avec la mécanisme de capture ou de structures utilisées, ainsi que comment des petits changements de taille, de forme, ou de vitesse d'écoulement peuvent conduire à un nouveau fonctionnement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design, implementation and evaluation of a collaborative learning activity designed to replace traditional face-to-face lectures in a large classroom. This activity aims to better engage the students with their learning and improve the students’ experience and outcomes. This project is implemented in the Fluid Mechanics unit of the Mechanical Engineering degree at the Queensland University of Technology to introduce students with the concept, terminology and process of Computational Fluid Dynamics (CFD). The approach integrates a constructive collaborative assignment which is a key element in the overall quality of teaching and learning, and an integral component of the students’ experience. A detailed survey, given to the students, showed an overall high level of satisfaction. However, the results also highlighted the gap between students’ expectations both for contents and assignment and teacher expectations. Discussions to address this issue are presented in the paper based on a critical reflection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics has reached a stage where flow field in practical situation can be predicted to aid the design and to probe into the fundamental flow physics to understand and resolve the issues in fundamental fluid mechanics The study examines the computation of reacting flows After exploring the conservation equations for species and energy, the methods of closing the reaction rate terms in turbulent flow have been examined briefly Two cases of computation where combustion-flow interaction plays important role, have been discussed to illustrate the computational aspects and the physical insight that can be gained by the reacting flow computation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics was used to search for the links between the observed pattern of attack seen in a bauxite refinery's heat exchanger headers and the hydrodynamics inside the header. Validation of the computational fluid dynamics results was done by comparing then with flow parameters measured in a 1:5 scale model of the first pass header in the laboratory. Computational fluid dynamics simulations were used to establish hydrodynamic similarity between the 1:5 scale and full scale models of the first pass header. It was found that the erosion-corrosion damage seen at the tubesheet of the first pass header was a consequence of increased levels of turbulence at the tubesheet caused by a rapidly turning flow. A prismatic flow corrections device introduced in the past helped in rectifying the problem at the tubesheet but exaggerated the erosion-corrosion problem at the first pass header shell. A number of alternative flow correction devices were tested using computational fluid dynamics. Axial ribbing in the first pass header and an inlet flow diffuser have shown the best performance and were recommended for implementation. Computational fluid dynamics simulations have revealed a smooth orderly low turbulence flow pattern in the second, third and fourth pass as well as the exit headers where no erosion-corrosion was seen in practice. This study has confirmed that near-wall turbulence intensity, which can be successfully predicted by using computational fluid dynamics, is a good hydrodynamic predictor of erosion-corrosion damage in complex geometries. (c) 2006 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of computer modeling has grown recently to integrate itself as an inseparable tool to experimental studies for the optimization of automotive engines and the development of future fuels. Traditionally, computer models rely on simplified global reaction steps to simulate the combustion and pollutant formation inside the internal combustion engine. With the current interest in advanced combustion modes and injection strategies, this approach depends on arbitrary adjustment of model parameters that could reduce credibility of the predictions. The purpose of this study is to enhance the combustion model of KIVA, a computational fluid dynamics code, by coupling its fluid mechanics solution with detailed kinetic reactions solved by the chemistry solver, CHEMKIN. As a result, an engine-friendly reaction mechanism for n-heptane was selected to simulate diesel oxidation. Each cell in the computational domain is considered as a perfectly-stirred reactor which undergoes adiabatic constant- volume combustion. The model was applied to an ideally-prepared homogeneous- charge compression-ignition combustion (HCCI) and direct injection (DI) diesel combustion. Ignition and combustion results show that the code successfully simulates the premixed HCCI scenario when compared to traditional combustion models. Direct injection cases, on the other hand, do not offer a reliable prediction mainly due to the lack of turbulent-mixing model, inherent in the perfectly-stirred reactor formulation. In addition, the model is sensitive to intake conditions and experimental uncertainties which require implementation of enhanced predictive tools. It is recommended that future improvements consider turbulent-mixing effects as well as optimization techniques to accurately simulate actual in-cylinder process with reduced computational cost. Furthermore, the model requires the extension of existing fuel oxidation mechanisms to include pollutant formation kinetics for emission control studies.