900 resultados para Compressive Stresses.
Resumo:
The integral diaphragm pressure transducer consists of a diaphragm machined from precipitation hardened martensitic (APX4) steel. Its performance is quite significant as it depends upon various factors such as mechanical properties including induced residual stress levels, metallurgical and physical parameters due to different stages of processing involved. Hence, the measurement and analysis of residual stress becomes very important from the point of in-service assessment of a component. In the present work, the stress measurements have been done using the X-ray diffraction (XRD) technique, which is a non-destructive test (NDT). This method is more reliable and widely used compared to the other NDT techniques. The metallurgical aspects have been studied by adopting the conventional metallographic practices including examination of microstructure using light microscope. The dimensional measurements have been carried out using dimensional gauge. The results of the present investigation reveals that the diaphragm material after undergoing series of realization processes has yielded good amount of retained austenite in it. Also, the presence of higher compressive stresses induced in the transducer results in non-linearity, zero shift and dimensional instability. The problem of higher retained austenite content and higher compressive stress have been overcome by adopting a new realization process involving machining and cold and hot stabilization soak which has brought down the retained austenite content to about 5–6% and acceptable level of compressive stress in the range −100 to −150 MPa with fine tempered martensitic phase structure and good dimensional stability. The new realization process seems to be quite effective in terms of controlling retained austenite content, residual stress, metallurgical phase as well as dimensional stability and this may result in minimum zero shift of the diaphragm system.
Resumo:
This paper presents the measurements of strain and the subsequent stress analysis on an in-service cast iron water main buried in reactive soil. The results indicate that the pipe crown experienced predominantly tensile stresses during drying in summer and, subsequently, these stresses reduce, eventually leading to compressive stresses as the soil swells with increase in moisture content with the approach of winter. It is also evident that flexural movement caused by thermal stresses and soil pressure has led to downward bending of the pipe in summer and subsequent upward movement in winter. The limited data collected from pipe strains and strengths indicate that it is possible for pipe capacity to be exceeded by thermal and soil stresses leading to pipe failure, provided the pipe has undergone significant corrosion.
Resumo:
This paper deals with the failure of high adhesive, low compressive strength, thin layered polymer mortar joints in masonry through a contact modelling in finite element framework. Failure due to combined shear, tensile and compressive stresses are considered through a constitutive damaging contact model that incorporates traction–separation as a function of displacement discontinuity. The modelling method is verified using single and multiple contact analyses of thin mortar layered masonry specimens under shear, tensile and compressive stresses and their combinations. Using this verified method, the failure of thin mortar layered masonry under a range of shear to tension ratios and shear to compression ratios has been examined. Finally, this model is applied to thin bed masonry wallettes for their behaviour under biaxial tension–tension and compression–tension loadings perpendicular and parallel to the bed joints.
Resumo:
Hard, low stress diamond-like carbon films have been deposited by plasma assisted chemical vapour deposition technique, The various substrates include soft IR components like ZnS and ZnSe windows, Gaseous precursors such as propene, ethyl alcohol and acetone have been used to synthesize the films to study the nature of precursors in determining the film compatibility with the underlying component (substrate), The residual compressive stresses, the Young's modulus and the adhesion energy of the films have been estimated to be 10(10) dynes/cm(2), 10(10) N/m(2) and 1000 ergs/cm(2) respectively. To alleviate film failure, a study on the effects of additive gases such as hydrogen and the use of buffer layers such as ZrO2, has been undertaken, The diamond-like carbon films produced here are hard (5000 kg/mm(2)), specularly smooth in the wavelength region from 2.5 mu m to 20 mu m, with no microstructural features and have excellent adhesion on ZnS and ZnSe windows. The figure of merit of these films for aero-space applications has been evaluated by subjecting the film-buffer layer ZnS or ZnSe composite stack to wind, dust and rain erosion studies and by establishing the integrity of the specular IR transmittance of the stack upto 16 or 20 mu m as the case may be.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Resumo:
Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.
Resumo:
Para reabilitar a ausência de um elemento dentário posterior, as próteses parciais fixas (PPF) com retentores intracoronários são uma alternativa aos implantes osseointegrados. O objetivo deste estudo foi avaliar a distribuição de tensões nessas próteses com três combinações de materiais: cerâmica de zircônia parcialmente estabilizada por ítria (ZPEI) revestida por cerâmica de fluorapatita (α), cerâmica de dissilicato de lítio (β) ou compósito fibrorreforçado (γ). Na composição α, foram analisadas a presença ou ausência da cerâmica de revestimento na parede cervical das caixas proximais e três variações na área total da seção transversal dos conectores (4 mm de largura x 3,2, 4,2 ou 5,2 mm de altura). Em 8 modelos bidimensionais de elementos finitos, uma carga vertical de 500 N foi aplicada na fossa central do pôntico e as tensões principais máximas (tração) e mínimas (compressão) foram apontadas em MPa. Inicialmente foram avaliados os 6 modelos com PPF de ZPEI e suas variações. Os maiores valores das tensões de tração foram encontrados no terço cervical dos conectores. Quando presente nestas regiões, a cerâmica de revestimento recebeu tensões acima do limite de sua resistência à flexão. Na comparação entre os modelos sem cerâmica de revestimento na parede cervical das caixas proximais, mesmo aquele com conectores de 3,2 x 4 mm, cuja infraestrutura apresentava 2,5 x 3 mm, poderia ser recomendado para uso clínico. Altos valores de tensões de compressão foram registrados entre o terço oclusal e médio dos conectores, correspondente à união entre as cerâmicas, o que poderia ocasionar, devido à flexão, falhas adesivas. Posteriormente, o modelo de ZPEI com a cerâmica de fluorapatita ausente da parede cervical das caixas proximais e área total dos conectores de 4,2 x 4 mm foi comparado aos dois outros materiais com conectores de mesma área. Na PPF de dissilicato de lítio, os valores representaram uma provável violação do limite de sua resistência à flexão. A PPF de compósito fibrorreforçado apresentou tensões bem abaixo do limite de resistência à flexão de sua infraestrutura, mas, como no modelo de ZPEI, tensões compressivas se concentraram com alto valor entre o terço oclusal e médio dos conectores, local de união entre a resina composta e a infraestrutura de fibras. Os resultados mostraram que a cerâmica de dissilicato de lítio e a presença da cerâmica de fluorapatita na parede cervical das caixas proximais deveriam ser contraindicadas para a condição proposta. Parece viável uma área de conectores na infraestrutura de ZPEI com no mínimo 2,5 x 3 mm. A PPF de compósito fibrorreforçado apresenta resistência estrutural para a situação estudada, mas, como também aquelas compostas de ZPEI, aparenta ter como pontos fracos a adesão entre a infraestrutura e o material de cobertura e a própria resistência deste último.
Resumo:
Buried pipelines may be subject to upheaval buckling because of thermally induced compressive stresses. As the buckling load of a strut decreases with increasing out of straightness, not only the maximum available resistance from the soil cover, but also the movement of the pipeline required to mobilize this are important factors in design. This paper will describe the results of 15 full-scale laboratory tests that have been carried out on pipeline uplift in both sandy and rocky backfills. The cover to diameter ratio ranged from 0.1 to 6. The results show that mobilization distance exhibits a linear relationship with H=D ratio and that the postpeak uplift force-displacement response can be accurately modeled using existing models. A tentative design approach is suggested; the maximum available uplift resistance may be reliably predicted from the postpeak response, and the mobilization distance may be predicted using the relationships described in this paper. © 2012 American Society of Civil Engineers.
Resumo:
The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.
This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.
Resumo:
In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.
Resumo:
Delayed ettringite formation (DEF) in cementitious materials is widely considered as a harmful chemical reaction that causes extensive damages in hardened concrete. However, preventative measures and possible improvements in general are not extensively studied and require further attention. In this study was presented an investigation into a type of controlled DEF in places of finely dispersed crystallisation nuclei and provide evidence that the process may improve compressive strength of cementitious materials. The Alkali-Silica Reaction (ASR) in hydrated concrete was achieved with the addition of fly ash and was further accelerated with the Duggan’s test. Achieved strengths and monitoring of microstructure development conducted with electronic microscopy revealed that growth of ettringite crystals in the nuclei led to harmless internal compressive stresses, expansion of hydrated concrete and overall strengthening of the concrete matrix.
Resumo:
The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. Purpose. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. Material and methods. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Results. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. Conclusions. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342)