856 resultados para Compound muscle action potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the relationship between Bayesian MUNE and histological motor neuron counts in wild-type mice and in an animal model of ALS. Methods: We performed Bayesian MUNE paired with histological counts of motor neurons in the lumbar spinal cord of wild-type mice and transgenic SOD1 G93A mice that show progressive weakness over time. We evaluated the number of acetylcholine endplates that were innervated by a presynaptic nerve. Results: In wild-type mice, the motor unit number in the gastrocnemius muscle estimated by Bayesian MUNE was approximately half the number of motor neurons in the region of the spinal cord that contains the cell bodies of the motor neurons supplying the hindlimb crural flexor muscles. In SOD1 G93A mice, motor neuron numbers declined over time. This was associated with motor endplate denervation at the end-stage of disease. Conclusion: The number of motor neurons in the spinal cord of wild-type mice is proportional to the number of motor units estimated by Bayesian MUNE. In SOD1 G93A mice, there is a lower number of estimated motor units compared to the number of spinal cord motor neurons at the end-stage of disease, and this is associated with disruption of the neuromuscular junction. Significance: Our finding that the Bayesian MUNE method gives estimates of motor unit numbers that are proportional to the numbers of motor neurons in the spinal cord supports the clinical use of Bayesian MUNE in monitoring motor unit loss in ALS patients. © 2012 International Federation of Clinical Neurophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is proposed to describe force or compound muscle action potential (CMAP) trace data collected in an electromyography study for motor unit number estimation (MUNE). Experimental data was collected using incre- mental stimulation at multiple durations. However, stimulus information, vital for alternate MUNE methods, is not comparable for multiple duration data and therefore previous methods of MUNE (Ridall et al., 2006, 2007) cannot be used with any reliability. Hypothesised ring combinations of motor units are mod- elled using a multiplicative factor and Bayesian P-spline formulation. The model describes the process for force and CMAP in a meaningful way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the temporal relationship between pancreas transplant and the development of electrophysiological changes in the sciatic and caudal nerves of alloxan-induced diabetic rats. Nerve conduction studies were performed in diabetic rats subjected to pancreas transplantation at 4, 12, and 24 weeks after diabetes onset, using nondiabetic and untreated diabetic rats as controls. Nerve conduction data were significantly altered in untreated diabetic control rats up to 48 weeks of follow-up in all time points. Rats subjected to pancreas transplantation up to 4 and 12 weeks after diabetes onset had significantly increased motor nerve conduction velocity with improvement of wave amplitude, distal latency, and temporal dispersion of compound muscle action potential in all follow-up periods (P<0.05); these parameters remained abnormal when pancreas transplantation were performed late at 24 weeks. Our results suggest that early pancreas transplant (at 4-12 weeks) may be effective in controlling diabetic neuropathy in this in vivo model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ulnar-to-median nerve anastomosis in the forearm is a very rare occurrence, not mentioned in many anatomical text books. We found only 4 cases cited in medical literature. Here we describe 2 new cases, for which diagnosis was suspected when the compound muscle action potential of the abductor pollicis brevis muscle (APB), obtained by maximal stimulation of the median nerve at the elbow, was lower than that obtained at the wrist. The diagnosis was confirmed by stimulation of the ulnar nerve at the elbow, which evoked a compound muscle action potential of the APB with a clear negative initial deflection without volume-conducted potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work 3 new cases of suprascapular nerve mononeuropathy are described. ENMG diagnosis criteria were: a) normal sensory conduction studies of the ipsolateral ulnar, median and radial nerves; b) bilateral suprascapular nerve latencies with bilateral compound muscle action potential, obtained from the infraspinatus muscle with symmetrical techniques; and c) abnormal neurogenic infraspinatus muscle electromyographic findings, coexisting with normal electromyographical data of the ipsolateral deltoideus and supraspinatus muscles. These 3 cases of suprascapular mononeurpathy were found in 6,080 ENMG exams from our University Hospital. For us this mononeuropathy is rare with a 0.05% occurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various factors, including maturity, have been shown to influence peripheral nerve excitability measures, but little is known about differences in these properties between axons with different stimulation thresholds. Multiple nerve excitability tests were performed on the caudal motor axons of immature and mature female rats, recording from tail muscles at three target compound muscle action potential (CMAP) levels: 10%, 40% ("standard" level), and 60% of the maximum CMAP amplitude. Compared to lower target levels, axons at high target levels have the following characteristics: lower strength-duration time constant, less threshold reduction during depolarizing currents and greater threshold increase to hyperpolarizing currents, most notably to long hyperpolarizing currents in mature rats. Threshold-dependent effects on peripheral nerve excitability properties depend on the maturation stage, especially inward rectification (Ih), which becomes inversely related to threshold level. Performing nerve excitability tests at different target levels is useful in understanding the variation in membrane properties between different axons within a nerve. Because of the threshold effects on nerve excitability and the possibility of increased variability between axons and altered electric recruitment order in disease conditions, excitability parameters measured only at the "standard" target level should be interpreted with caution, especially the responses to hyperpolarizing currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test the hypothesis that muscle fibers are depolarized in patients with chronic renal failure, by measuring velocity recovery cycles of muscle action potentials as indicators of muscle membrane potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Reference values for quantitative electromyography (QEMG) in neck muscles of Royal Dutch Sport horses are lacking. OBJECTIVE: Determine normative data on quantitative motor unit action potential (QMUP) analysis of serratus ventralis cervicis (SV) and brachiocephalicus (BC) muscle. ANIMALS: Seven adult normal horses (mean age 9.5 standard deviation [SD] +/- 2.3 years, mean height 1.64 SD +/- 4.5 cm, and mean rectal temperature 37.6 SD +/- 0.3 degrees C). METHODS: An observational study on QMUP analysis in 6 segments of each muscle was performed with commercial electromyography equipment. Measurements were made according to formerly published methods. Natural logarithm transformed data were tested with ANOVA and posthoc testing according to Bonferroni. RESULTS: Mean duration, amplitude, phases, turns, area, and size index (SI) did not differ significantly among the 6 segments in each muscle. Mean amplitude, number of phases, and SI were significantly (P < .002) higher in SV than BC, 520 versus 448 muV, 3.0 versus 2.8 muV, and 0.48 versus 0.30 muV, respectively. In SV 95% confidence intervals (CI) for amplitude, duration, number of phases, turns, polyphasia area, and SI were 488-551 muV, 4.3-4.6 ms, 2.9-3.0, 2.4-2.6, 7-12%, 382-448, and 0.26-0.70, respectively; in BC this was 412-483 muV, 4.3-4.7 ms, 2.7-2.8, 2.4-2.6, 4-7%, 393-469, and 0.27-0.34, respectively. Maximal voluntary activity expressed by turns/second did not differ significantly between SV and BC with a 95% CI of 132-173 and 137-198, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: The establishment of normative data makes objective QEMG of paraspinal muscles in horses suspected of cervical neurogenic disorders possible. Differences between muscles should be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to test whether recovery cycle measurements can provide useful information about the membrane potential of human muscle fibers. Multifiber responses to direct muscle stimulation through needle electrodes were recorded from the brachioradialis of healthy volunteers, and the latency changes measured as conditioning stimuli were applied at interstimulus intervals of 2-1000 ms. In all subjects, the relative refractory period (RRP), which lasted 3.27 +/- 0.45 ms (mean +/- SD, n = 12), was followed by a phase of supernormality, in which the velocity increased by 9.3 +/- 3.4% at 6.1 +/- 1.3 ms, and recovered over 1 s. A broad hump of additional supernormality was seen at around 100 ms. Extra conditioning stimuli had little effect on the early supernormality but increased the later component. The two phases of supernormality resembled early and late afterpotentials, attributable respectively to the passive decay of membrane charge and potassium accumulation in the t-tubules. Five minutes of ischemia progressively prolonged the RRP and reduced supernormality, confirming that these parameters are sensitive to membrane depolarization. Velocity recovery cycles may provide useful information about altered muscle membrane potential and t-tubule function in muscle disease. Muscle Nerve, 2008.