981 resultados para Compound Poisson Process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the classical compound Poisson process in collective risk theory, we study a modification of the horizontal dividend barrier strategy by introducing random observation times at which dividends can be paid and ruin can be observed. This model contains both the continuous-time and the discrete-time risk model as a limit and represents a certain type of bridge between them which still enables the explicit calculation of moments of total discounted dividend payments until ruin. Numerical illustrations for several sets of parameters are given and the effect of random observation times on the performance of the dividend strategy is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60E05, 62P05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60K10, 62P05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the value function of maximizing the total discounted utility of dividend payments for a compound Poisson insurance risk model when strictly positive transaction costs are included, leading to an impulse control problem. We illustrate that well known simple strategies can be optimal in the case of exponential claim amounts. Finally we develop a numerical procedure to deal with general claim amount distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we propose a bootstrap test for the probability of ruin in the compound Poisson risk process. We adopt the P-value approach, which leads to a more complete assessment of the underlying risk than the probability of ruin alone. We provide second-order accurate P-values for this testing problem and consider both parametric and nonparametric estimators of the individual claim amount distribution. Simulation studies show that the suggested bootstrap P-values are very accurate and outperform their analogues based on the asymptotic normal approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large deviations type approximation to the probability of ruin within a finite time for the compound Poisson risk process perturbed by diffusion is derived. This approximation is based on the saddlepoint method and generalizes the approximation for the non-perturbed risk process by Barndorff-Nielsen and Schmidli (Scand Actuar J 1995(2):169–186, 1995). An importance sampling approximation to this probability of ruin is also provided. Numerical illustrations assess the accuracy of the saddlepoint approximation using importance sampling as a benchmark. The relative deviations between saddlepoint approximation and importance sampling are very small, even for extremely small probabilities of ruin. The saddlepoint approximation is however substantially faster to compute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.