786 resultados para Complexity measure
Resumo:
This paper presents a new relative measure of signal complexity, referred to here as relative structural complexity, which is based on the matching pursuit (MP) decomposition. By relative, we refer to the fact that this new measure is highly dependent on the decomposition dictionary used by MP. The structural part of the definition points to the fact that this new measure is related to the structure, or composition, of the signal under analysis. After a formal definition, the proposed relative structural complexity measure is used in the analysis of newborn EEG. To do this, firstly, a time-frequency (TF) decomposition dictionary is specifically designed to compactly represent the newborn EEG seizure state using MP. We then show, through the analysis of synthetic and real newborn EEG data, that the relative structural complexity measure can indicate changes in EEG structure as it transitions between the two EEG states; namely seizure and background (non-seizure).
Resumo:
In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann-Gibbs-Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner-Davison-Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.
Resumo:
We have previously derived a theoretical measure of neural complexity (CN) in an attempt to characterize functional connectivity in the brain. CN measures the amount and heterogeneity of statistical correlations within a neural system in terms of the mutual information between subsets of its units. CN was initially used to characterize the functional connectivity of a neural system isolated from the environment. In the present paper, we introduce a related statistical measure, matching complexity (CM), which reflects the change in CN that occurs after a neural system receives signals from the environment. CM measures how well the ensemble of intrinsic correlations within a neural system fits the statistical structure of the sensory input. We show that CM is low when the intrinsic connectivity of a simulated cortical area is randomly organized. Conversely, CM is high when the intrinsic connectivity is modified so as to differentially amplify those intrinsic correlations that happen to be enhanced by sensory input. When the input is represented by an individual stimulus, a positive value of CM indicates that the limited mutual information between sensory sheets sampling the stimulus and the rest of the brain triggers a large increase in the mutual information between many functionally specialized subsets within the brain. In this way, a complex brain can deal with context and go "beyond the information given."
Resumo:
This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This essay is a trial on measuring complexity in a three-trophic level system by using a convex function of the informational entropy. The complexity measure defined here is compatible with the fact that real complexity lies between ordered and disordered states. Applying this measure to the data collected for two three-trophic level systems some hints about their organization are obtained. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.
Resumo:
With the financial market globalization, foreign investments became vital for the economies, mainly in emerging countries. In the last decades, Brazilian exchange rates appeared as a good indicator to measure either investors' confidence or risk aversion. Here, some events of global or national financial crisis are analyzed, trying to understand how they influenced the "dollar-real" rate evolution. The theoretical tool to be used is the Lopez-Mancini-Calbet (LMC) complexity measure that, applied to real exchange rate data, has shown good fitness between critical events and measured patterns. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalized, including to continuous cases and general networks. By applying this measure to a series of objects, it is shown that it can be consistently used for both small scale structures with exact symmetry breaking and large scale patterns, for which, differently from similar measures, it consistently discriminates between repetitive patterns, random configurations and self-similar structures
Resumo:
This paper aims at reconsidering some analytical measures to best encapsulate the interlanguage, in writing, of young beginner learners of English as a foreign language in the light of previous and work-in-progress research conducted within the BAF project, and in particular, whether clause and sentence length should be best viewed as a fluency or syntactic complexity measusre or as part of a different construct. In the light of a factor analysis (Navés, forthcoming) and multivariate and correlation studies (Navés et al. 2003, Navés, 2006, Torres et al. 2006) it becomes clear that the relationship between different analytical measures is also dependent on learner¿s cognitive maturity (age) and proficiency (amount of instruction). Finally, clause and sentence length should not be viewed as either a fluency or sytactic complexity measure but as part of a different construct. It is concluded that further research using regression analysis and cluster analysis is neeed in order to identify and validate the constructs of the writing components and their measurements.
Resumo:
This paper aims at reconsidering some analytical measures to best encapsulate the interlanguage, in writing, of young beginner learners of English as a foreign language in the light of previous and work-in-progress research conducted within the BAF project, and in particular, whether clause and sentence length should be best viewed as a fluency or syntactic complexity measusre or as part of a different construct. In the light of a factor analysis (Navés, forthcoming) and multivariate and correlation studies (Navés et al. 2003, Navés, 2006, Torres et al. 2006) it becomes clear that the relationship between different analytical measures is also dependent on learner¿s cognitive maturity (age) and proficiency (amount of instruction). Finally, clause and sentence length should not be viewed as either a fluency or sytactic complexity measure but as part of a different construct. It is concluded that further research using regression analysis and cluster analysis is neeed in order to identify and validate the constructs of the writing components and their measurements.
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
The restarting automaton is a restricted model of computation that was introduced by Jancar et al. to model the so-called analysis by reduction, which is a technique used in linguistics to analyze sentences of natural languages. The most general models of restarting automata make use of auxiliary symbols in their rewrite operations, although this ability does not directly correspond to any aspect of the analysis by reduction. Here we put restrictions on the way in which restarting automata use auxiliary symbols, and we investigate the influence of these restrictions on their expressive power. In fact, we consider two types of restrictions. First, we consider the number of auxiliary symbols in the tape alphabet of a restarting automaton as a measure of its descriptional complexity. Secondly, we consider the number of occurrences of auxiliary symbols on the tape as a dynamic complexity measure. We establish some lower and upper bounds with respect to these complexity measures concerning the ability of restarting automata to recognize the (deterministic) context-free languages and some of their subclasses.
Resumo:
We investigate whether and how bank complexity affects performance and systemic risk. We base the analysis on a complexity measure that captures diversification and diversity, controlling for size and other bank characteristics. We find that more complex banks exhibit a higher profitability, lower risk, and higher market share. Moreover, we show an inversely U-shaped relation between bank complexity and banks’ sensitivity to systemic shocks. The evidence challenges the view that higher bank complexity is per se bad and is consistent with theoretical models that show that diversity in the banking system is critical for financial stability.
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.