999 resultados para Complex permittivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex permittivity characteristics of epoxy nanocomposite systems were examined and an attempt has been made to understand the underlying physics governing some of the unique macroscopic dielectric behaviors. The experimental investigations were performed using two different nanocomposite systems with low filler concentrations over the frequency range of 10(-2)-400 Hz, but for some cases, the data has been reported upto 10(6) Hz for a better understanding of the behaviors. Results demonstrate that nanocomposites do possess unique permittivity behaviors as compared to those already known for unfilled polymer and microcomposite systems. The nanocomposite real permittivity and tan delta values are found to be lower than that of unfilled epoxy. In addition, results show that interfacial polarization and charge carrier mobilities are suppressed in epoxy nanocomposite systems. The complex permittivity spectra coupled with the ac conductivity characteristics with respect to frequency was found to be sufficient to identify several of the nanocomposite characteristics like the reduction in permittivity values, reduction in the interfacial polarization mechanisms and the electrical conduction behaviors. Analysis of the results are also performed using electric modulus formalisms and it has been seen that the nanocomposite dielectric behaviors at low frequencies can also be explained clearly using this formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However, the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and efficient method for determining the complex permittivity of dielectric materials from both reflected and transmitted signals is presented. It is also novel because the technique is implemented using two pyramidal horns without any focusing mechanisms. The dielectric constant of a noninteractive and distributive (NID) mixture of dielectrics is also determined

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric properties of polyaniline at different frequencies were studied. Cavity perturbation technique was employed for the study. Poly aniline in the powder and pelletised forms were prepared under different environmental conditions. Different samples of poly aniline exhibit high conductivity. However. the conductivity of samples prepared under different environmental conditions is found to vary. All the samples in the powder form have high conductivity irrespective of the method of preparation. The high conductivity at microwave frequency makes it possible to be used for developing microwave components like filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel cavity perturbation technique using coaxial cavity resonators for the measurement of complex permittivity of liquids is presented. The method employs two types of resonators (Resonator I and Resonator II). Resonator I operates in the frequency range 600 MHz-7 GHz and resonator II operates in the frequency range 4 GHz-14 GHz. The introduction of the capillary tube filled with the sample liquid into the coaxial resonator causes shifts in the resonance frequency and loaded Q-factor of the resonator. The shifts in the resonance frequency and loaded Q-factor are used to determine the real and imaginary parts of the complex permittivity of the sample liquid, respectively. Using this technique, the dielectric parameters of water and nitrobenzene are measured. The results are compared with those obtained using other standard methods. The sources of errors are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis is focused on the open-ended coaxial-probe frequency-domain reflectometry technique for complex permittivity measurement at microwave frequencies of dispersive dielectric multilayer materials. An effective dielectric model is introduced and validated to extend the applicability of this technique to multilayer materials in on-line system context. In addition, the thesis presents: 1) a numerical study regarding the imperfectness of the contact at the probe-material interface, 2) a review of the available models and techniques, 3) a new classification of the extraction schemes with guidelines on how they can be used to improve the overall performance of the probe according to the problem requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a new approach to in-situ measurement of femtosecond laser pulse induced changes in glass enabling the reconstruction in 3D of the induced complex permittivity modification. The technique can be used to provide single shot and time resolved quantitative measurements with a micron scale spatial resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon microcoils (CMCs) have been coated with a Ni nanoparticle film using an electroless plating process. The morphology, the elemental composition and the phases in the coating layer, complex permittivity and permeability of the CMCs and Ni-coated CMCs were, respectively, investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microwave vector network analysis at room temperature. A homogeneous dispersion of Ni nanoparticles on the outer surface of the CMCs was obtained, with a mean particle size of ∼34.4 nm and the phosphorus content of about 8.5 wt%. When comparing the coated and uncoated CMC samples, the real (ε′) and imaginary (ε″) part of the complex permittivity as well as dielectric dissipation factor (tgδε = ε″/ε′) of the Ni-coated CMCs were much smaller, while the real (μ′) and imaginary (μ″) part of the complex permeability and the magnetic dissipation factor (t g σμ = μ″ / μ′) were larger. The enhanced microwave absorption of Ni-coated CMCs resulted from stronger dielectric and magnetic losses. In contrast, the microwave absorption of uncoated CMCs was mainly attributed to the dielectric rather than magnetic losses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycrystalline Ni-Zn ferrites with a well-defined composition of Ni0.4Zn0.6Fe2-xSbxO4 synthesized using sol-gel method. Morphological characterizations on the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. The powders were densified using microwave sintering method. The room temperature complex permittivity (epsilon' and epsilon aEuro(3)) and permeability (mu' and mu aEuro(3)) were measured over a wide frequency range from 1 MHz-1.8 GHz. The real part of permittivity varies as `x' concentration increases and the resonance frequency was observed at much higher frequencies and there is a significant decrease in the loss factor (tan delta). The electrical resistivity and permeability of NiZn ferrites increased with an increase of Sb content. As the concentration of `x' increases from 0 to 0.08 the saturation magnetisation decreases. The saturation magnetization (M-s) a parts per thousand aEuro parts per thousand 52.211 A.m(2)/Kg for x = 0 at room temperature. The room temperature electro paramagnetic resonance (EPR) were studied.