872 resultados para Complex networks, resting state fMRI, centrality measures
Resumo:
Negli ultimi anni la teoria dei network è stata applicata agli ambiti più diversi, mostrando proprietà caratterizzanti tutti i network reali. In questo lavoro abbiamo applicato gli strumenti della teoria dei network a dati cerebrali ottenuti tramite MRI funzionale “resting”, provenienti da due esperimenti. I dati di fMRI sono particolarmente adatti ad essere studiati tramite reti complesse, poiché in un esperimento si ottengono tipicamente più di centomila serie temporali per ogni individuo, da più di 100 valori ciascuna. I dati cerebrali negli umani sono molto variabili e ogni operazione di acquisizione dati, così come ogni passo della costruzione del network, richiede particolare attenzione. Per ottenere un network dai dati grezzi, ogni passo nel preprocessamento è stato effettuato tramite software appositi, e anche con nuovi metodi da noi implementati. Il primo set di dati analizzati è stato usato come riferimento per la caratterizzazione delle proprietà del network, in particolare delle misure di centralità, dal momento che pochi studi a riguardo sono stati condotti finora. Alcune delle misure usate indicano valori di centralità significativi, quando confrontati con un modello nullo. Questo comportamento `e stato investigato anche a istanti di tempo diversi, usando un approccio sliding window, applicando un test statistico basato su un modello nullo pi`u complesso. Il secondo set di dati analizzato riguarda individui in quattro diversi stati di riposo, da un livello di completa coscienza a uno di profonda incoscienza. E' stato quindi investigato il potere che queste misure di centralità hanno nel discriminare tra diversi stati, risultando essere dei potenziali bio-marcatori di stati di coscienza. E’ stato riscontrato inoltre che non tutte le misure hanno lo stesso potere discriminante. Secondo i lavori a noi noti, questo `e il primo studio che caratterizza differenze tra stati di coscienza nel cervello di individui sani per mezzo della teoria dei network.
Resumo:
In the recent past, various intrinsic connectivity networks (ICN) have been identified in the resting brain. It has been hypothesized that the fronto-parietal ICN is involved in attentional processes. Evidence for this claim stems from task-related activation studies that show a joint activation of the implicated brain regions during tasks that require sustained attention. In this study, we used functional magnetic resonance imaging (fMRI) to demonstrate that functional connectivity within the fronto-parietal network at rest directly relates to attention. We applied graph theory to functional connectivity data from multiple regions of interest and tested for associations with behavioral measures of attention as provided by the attentional network test (ANT), which we acquired in a separate session outside the MRI environment. We found robust statistical associations with centrality measures of global and local connectivity of nodes within the network with the alerting and executive control subfunctions of attention. The results provide further evidence for the functional significance of ICN and the hypothesized role of the fronto-parietal attention network. Hum Brain Mapp , 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen level-dependent (BOLD) signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA) and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting-state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting-state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting-state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.
Resumo:
Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.
Resumo:
Background: The majority of studies investigating the neural mechanisms underlying treatment in people with aphasia have examined task-based brain activity. However, the use of resting-state fMRI may provide another method of examining the brain mechanisms responsible for treatment-induced recovery, and allows for investigation into connectivity within complex functional networks Methods: Eight people with aphasia underwent 12 treatment sessions that aimed to improve object naming. Half the sessions employed a phonologically-based task, and half the sessions employed a semantic-based task, with resting-state fMRI conducted pre- and post-treatment. Brain regions in which the amplitude of low frequency fluctuations (ALFF) correlated with treatment outcomes were used as seeds for functional connectivity (FC) analysis. FC maps were compared from pre- to post-treatment, as well as with a group of 12 healthy older controls Results: Pre-treatment ALFF in the right middle temporal gyrus (MTG) correlated with greater outcomes for the phonological treatment, with a shift to the left MTG and supramarginal gyrus, as well as the right inferior frontal gyrus, post-treatment. When compared to controls, participants with aphasia showed both normalization and up-regulation of connectivity within language networks post-treatment, predominantly in the left hemisphere Conclusions: The results provide preliminary evidence that treatments for naming impairments affect the FC of language networks, and may aid in understanding the neural mechanisms underlying the rehabilitation of language post-stroke.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test–retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test–retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions.
Resumo:
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Resumo:
Head motion (HM) is a critical confounding factor in functional MRI. Here we investigate whether HM during resting state functional MRI (RS-fMRI) is influenced by genetic factors in a sample of 462 twins (65% fema≤ 101 MZ (monozygotic) and 130 DZ (dizygotic) twin pairs; mean age: 21 (SD=3.16), range 16-29). Heritability estimates for three HM components-mean translation (MT), maximum translation (MAXT) and mean rotation (MR)-ranged from 37 to 51%. We detected a significant common genetic influence on HM variability, with about two-thirds (genetic correlations range 0.76-1.00) of the variance shared between MR, MT and MAXT. A composite metric (HM-PC1), which aggregated these three, was also moderately heritable (h2=42%). Using a sub-sample (N=35) of the twins we confirmed that mean and maximum translational and rotational motions were consistent "traits" over repeated scans (r=0.53-0.59); reliability was even higher for the composite metric (r=0.66). In addition, phenotypic and cross-trait cross-twin correlations between HM and resting state functional connectivities (RS-FCs) with Brodmann areas (BA) 44 and 45, in which RS-FCs were found to be moderately heritable (BA44: h2-=0.23 (sd=0.041), BA45: h2-=0.26 (sd=0.061)), indicated that HM might not represent a major bias in genetic studies using FCs. Even so, the HM effect on FC was not completely eliminated after regression. HM may be a valuable endophenotype whose relationship with brain disorders remains to be elucidated.
Resumo:
Studies have revealed abnormalities in resting-state functional connectivity in those with major depressive disorder specifically in areas such as the dorsal anterior cingulate, thalamus, amygdala, the pallidostriatum and subgenual cingulate. However, the effect of antidepressant medications on human brain function is less clear and the effect of these drugs on resting-state functional connectivity is unknown. Forty volunteers matched for age and gender with no previous psychiatric history received either citalopram (SSRI; selective serotonergic reuptake inhibitor), reboxetine (SNRI; selective noradrenergic reuptake inhibitor) or placebo for 7 days in a double-blind design. Using resting-state functional magnetic resonance imaging and seed based connectivity analysis we selected the right nucleus accumbens, the right amygdala, the subgenual cingulate and the dorsal medial prefrontal cortex as seed regions. Mood and subjective experience were also measured before and after drug administration using self-report scales. Despite no differences in mood across the three groups, we found reduced connectivity between the amygdala and the ventral medial prefrontal cortex in the citalopram group and the amygdala and the orbitofrontal cortex for the reboxetine group. We also found reduced striatal-orbitofrontal cortex connectivity in the reboxetine group. These data suggest that antidepressant medications can decrease resting-state functional connectivity independent of mood change and in areas known to mediate reward and emotional processing in the brain. We conclude that hypothesis-driven seed based analysis of resting-state fMRI supports the proposition that antidepressant medications might work by normalising the elevated resting-state functional connectivity seen in depressed patients.
Resumo:
Specific choices about how to represent complex networks can have a substantial impact on the execution time required for the respective construction and analysis of those structures. In this work we report a comparison of the effects of representing complex networks statically by adjacency matrices or dynamically by adjacency lists. Three theoretical models of complex networks are considered: two types of Erdos-Renyi as well as the Barabasi-Albert model. We investigated the effect of the different representations with respect to the construction and measurement of several topological properties (i.e. degree, clustering coefficient, shortest path length, and betweenness centrality). We found that different forms of representation generally have a substantial effect on the execution time, with the sparse representation frequently resulting in remarkably superior performance. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency domain EEG. Methodology/Principal Findings: In the present study we report on the topographic association of EEG spectral fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency bands. We found significant differences between covariance maps of the different RSNs and these differences depended on the frequency band. Conclusions/Significance: Our data supports the physiological and neuronal origin of the RSNs and substantiates the assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signatures of underlying distributed neuronal networks.
Resumo:
INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.
Resumo:
There have been numerous attempts to reveal the neurobiological basis of schizophrenia spectrum disorders. Results however, remain as heterogeneous as the schizophrenia spectrum disorders itself. Therefore, one aim of this thesis was to divide patients affected by this disorder into subgroups in order to homogenize the results of future studies. In a first study it is suggested that psychopathological rating scales should focus on symptoms-clusters that may have a common neurophysiological background. The here presented Bern Psychopathology Scale (BPS) proposes that alterations in three wellknown brain systems (motor, language, and affective) are largely leading to the communication failures observable on a behavioral level, but also - as repeatedly hypothesized - to dysconnectivity within and between brain systems in schizophrenia spectrum disorders. The external validity of the motor domain in the BPS was tested against the objective measure of 24 hours wrist actigraphy, in a second study. The subjective, the quantitative, as well as the global rating of the degree of motor disorders in this patient group showed significant correlations to the acquired motor activity. This result confirmed in a first step the practicability of the motor domain of the BPS, but needs further validation regarding pathological brain alterations. Finally, in a third study (independent from the two other studies), two cerebral Resting State Networks frequently altered in schizophrenia were investigated for the first time using simultaneous EEG/fMRI: The well-known default mode network and the left working memory network. Besides the changes in these fMRI-based networks, there are well-documented findings that patients exhibit alterations in EEG spectra compared to healthy controls. However, only through the multimodal approach it was possible to discover that patients with schizophrenia spectrum disorders have a slower driving frequency of the Resting State Networks compared to the matched healthy controls. Such a dysfunctional coupling between neuronal frequency and functional brain organization could explain in a uni- or multifactorial way (dysfunctional cross-frequency coupling, maturational effects, vigilance fluctuations, task-related suppression), how the typical psychotic symptoms might occur. To conclude, the major contributions presented in this thesis were on one hand the development of a psychopathology rating scale that is based on the assumption of dysfunctional brain networks, as well as the new evidence of a dysfunctional triggering frequency of Resting State Networks from the simultaneous EEG/fMRI study in patients affected by a schizophrenia spectrum disorder.