1000 resultados para Competition Optimization
Resumo:
After generally discussing models in ecology and economics that combine competition, optimization, and evolution, this article concentrates on models of intraspecific competition. It demonstrates the importance of diversity/inequalities within populations of species and other environments for the sustainability of their populations, given the occurrence of environmental change. This is demonstrated both for scramble (open-access) and contest competition. Implications are drawn for human populations and industrial organization. The possibility is raised that within-industry competition may not always exist between firms in all stages of the development of a new industry. Policy implications are considered. For example, it is argued that policies designed to encourage intense business competition and maximum economic efficiency have the drawback of eventually making industries highly vulnerable to exogenous economic changes.
Resumo:
Schon seit einigen Jahrzehnten wird die Sportwissenschaft durch computergestützte Methoden in ihrer Arbeit unterstützt. Mit der stetigen Weiterentwicklung der Technik kann seit einigen Jahren auch zunehmend die Sportpraxis von deren Einsatz profitieren. Mathematische und informatische Modelle sowie Algorithmen werden zur Leistungsoptimierung sowohl im Mannschafts- als auch im Individualsport genutzt. In der vorliegenden Arbeit wird das von Prof. Perl im Jahr 2000 entwickelte Metamodell PerPot an den ausdauerorientierten Laufsport angepasst. Die Änderungen betreffen sowohl die interne Modellstruktur als auch die Art der Ermittlung der Modellparameter. Damit das Modell in der Sportpraxis eingesetzt werden kann, wurde ein Kalibrierungs-Test entwickelt, mit dem die spezifischen Modellparameter an den jeweiligen Sportler individuell angepasst werden. Mit dem angepassten Modell ist es möglich, aus gegebenen Geschwindigkeitsprofilen die korrespondierenden Herzfrequenzverläufe abzubilden. Mit dem auf den Athleten eingestellten Modell können anschliessend Simulationen von Läufen durch die Eingabe von Geschwindigkeitsprofilen durchgeführt werden. Die Simulationen können in der Praxis zur Optimierung des Trainings und der Wettkämpfe verwendet werden. Das Training kann durch die Ermittlung einer simulativ bestimmten individuellen anaeroben Schwellenherzfrequenz optimal gesteuert werden. Die statistische Auswertung der PerPot-Schwelle zeigt signifikante Übereinstimmungen mit den in der Sportpraxis üblichen invasiv bestimmten Laktatschwellen. Die Wettkämpfe können durch die Ermittlung eines optimalen Geschwindigkeitsprofils durch verschiedene simulationsbasierte Optimierungsverfahren unterstützt werden. Bei der neuesten Methode erhält der Athlet sogar im Laufe des Wettkampfs aktuelle Prognosen, die auf den Geschwindigkeits- und Herzfrequenzdaten basieren, die während des Wettkampfs gemessen werden. Die mit PerPot optimierten Wettkampfzielzeiten für die Athleten zeigen eine hohe Prognosegüte im Vergleich zu den tatsächlich erreichten Zielzeiten.
Resumo:
Field Lab of Entrepreneurial Innovative Ventures
Resumo:
We characterize the set of Walrasian allocations of an economy as theset of allocations which can be supported by abstract equilibria that satisfy a recontracting condition which reflects the idea that agents can freely trade with each other. An alternative (and weaker) recontracting condition characterizesthe core. The results are extended to production economies by extending thedefinition of the recontracting condition to include the possibility of agentsto recontract with firms. However, no optimization requirement is imposed onfirms. In pure exchange economies, an abstract equilibrium is a feasible allocation and a list of choice sets, one for each agent, that satisfy thefollowing conditions: an agent's choice set is a subset of the commodity space that includes his endowment; and each agent's equilibrium bundle isa maximal element in his choice set, with respect to his preferences. Therecontracting condition requires that any agent can buy bundles from any other agent's choice set by offering the other agent a bundle he prefers tohis equilibrium bundle.
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
Purpose - The purpose of this paper is to identify the most popular techniques used to rank a web page highly in Google. Design/methodology/approach - The paper presents the results of a study into 50 highly optimized web pages that were created as part of a Search Engine Optimization competition. The study focuses on the most popular techniques that were used to rank highest in this competition, and includes an analysis on the use of PageRank, number of pages, number of in-links, domain age and the use of third party sites such as directories and social bookmarking sites. A separate study was made into 50 non-optimized web pages for comparison. Findings - The paper provides insight into the techniques that successful Search Engine Optimizers use to ensure a page ranks highly in Google. Recognizes the importance of PageRank and links as well as directories and social bookmarking sites. Research limitations/implications - Only the top 50 web sites for a specific query were analyzed. Analysing more web sites and comparing with similar studies in different competition would provide more concrete results. Practical implications - The paper offers a revealing insight into the techniques used by industry experts to rank highly in Google, and the success or other-wise of those techniques. Originality/value - This paper fulfils an identified need for web sites and e-commerce sites keen to attract a wider web audience.
Resumo:
Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.
Resumo:
In the present study, a single procedure was established to investigate the effect of the spatial distribution of immatures in patchy resources, on the outcome of larval competition for food. in experimental populations of Chrysomya megacephala. A theoretical model of intraspecific competition was extended and applied to experimental data on survival to adulthood for 20 larval densities, to obtain the theoretical mean number of individuals that will survive, considering a hypothetical previous random adult oviposition in a system of homogeneous patches. The survival curve obtained suggests that the larval competition for food in C. megacephala is of the scramble/exploitative type, which corroborates results from previous studies, although the latter did not consider the correlation between local and global abundances. The present model allows that experimental data could be perfectly applicable, and it incorporates fundamental assumptions about the spatial context of competition for patchy resources in blowflies, and may be applied to the optimization of mass rearing techniques and to the maintenance of insect colonies under experimental conditions.
Resumo:
Includes bibliography
Resumo:
Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.
Resumo:
The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.
Resumo:
Se ha presentado la evaluación y optimización de las reglas de operación de un embalse para gestión de avenidas usando un entorno integrado hidrológico- hidráulico de tipo Monte Carlo. Some reservoirs play a major role in flood protection, managing the floods and reducing or delaying the peak discharges in the river downstream. However, the changing environment (natural and anthropological changes) requires the development of more elaborated strategies for reservoir operation. Three factors are relevant: 1) the natural variability of inflow hydrographs, 2) the competition for reservoir storage capacity between flood control and other uses, and 3) the existence of built-up areas on downstream river reaches. A framework for evaluation/optimization of reservoir operation rules for flood management in a changing environment is presented in this study. The study was carried out using an integrated hydrologic – hydraulic model in a Monte Carlo framework.
Resumo:
The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.
Resumo:
Enhanced biological phosphorus removal (EBPR) is a widely used process for achieving phosphorus removal from wastewater. A potential reason for EBPR failure is the undesirable growth of glycogen accumulating organisms (GAOs), which can compete for carbon sources with the bacterial group responsible for phosphorus removal from wastewater: the polyphosphate accumulating organisms (PAOs). This study investigates the impact of carbon source on EBPR performance and the competition between PAOs and GAOs. Two sequencing batch reactors (SBRs) were operated during a 4-6 month period and fed with a media containing acetate or propionate, respectively, as the sole carbon source. It was found that the acetate fed SBR rarely achieved a high level of phosphorus removal, and that a large portion of the microbial community was comprised of Candidatus Competibacter phosphatis, a known GAO. The propionate fed SBR, however, achieved stable phosphorus removal throughout the study, apart from one brief disturbance. The bacterial community of the propionate fed SBR was dominated by Candidatus Accumulibacter phosphatis, a known PAO, and did not contain Competibacter In a separate experiment, another SBR was seeded with a mixture of PAOs and a group of alphaproteobacterial GAOs, both enriched with propionate as the sole carbon source. Stable EBPR was achieved and the PAO population increased while the GAOs appeared to be out-competed. The results of this paper suggest that propionate may provide PAOs with a selective advantage over GAOs in the PAO-GAO competition, particularly through the minimisation of Competibacter Propionate may be a more suitable substrate than acetate for enhancing phosphorus removal in EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.