999 resultados para Compósitos de matriz metálica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbide reinforced metallic alloys potentially improve some important mechanical properties required for the overall use of important engineering materials such as steel and nickel. Nevertheless, improved performance is achieved not only by composition enhancement but also by adequate processing techniques, such as novel sintering methods in the case of powder metallurgy. The method minimizes energy losses in addition to providing uniform heating during sintering. Thus, the general objective of this study was to evaluate the density, hardness, flexural strength, dilatometric behavior and to analyze the microstructure of metal matrix composites based nickel with addition of carbides of tantalum and / or niobium when sintered in a conventional furnace and Plasma assisted debinding and sintering (PADS). Initially, were defineds best parameters of granulation, screening and mixing procedure. After, mixtures of carbonyl Ni and 5%, 10% and 15 wt.% NbC and TaC were prepared in a Y-type mixer under wet conditions during 60 minutes. The mixtures were then dried and granulated using 1.5 wt. % paraffin diluted in hexane. Granulates were cold pressed under 600 MPa. Paraffin was then removed from the pressed pellets during a pre-sintering process carried out in a tubular furnace at 500 °C during 30 min. The heating rate was 3 ºC/min. The pellets were then sintered using either a plasma assisted reactor or a conventional resistive tubular furnace. For both methods, the heating rate was set to 8 ºC/min up to 1150 °C. The holding time was 60 minutes. The microstructure of the sintered samples was evaluated by SEM. Brinell hardness tests were also carried out. The results revealed that higher density and higher hardness values were observed in the plasma-assisted sintered samples. Hardness increased with the concentration of carbides in the Ni-matrix. The flexural strength also increased by adding the carbides. The decline was larger for the sample with addition of 5% 5% TaC and NbC. In general, compositions containing added carbide 10% showed less porous and more uniform distribution of carbides in the nickel matrix microstructural appearance. Thus, both added carbide and plasma sintering improved density, hardness, flexural strength and microstructural appearance of the composites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Ciência dos Materiais Especialidade de Materiais Compósitos pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aplicação do material compósito é neste momento bastante vasta, graças à combinação das suas características específicas, tais como, maior resistência específica e módulos específicos e melhor resistência à fadiga, quando comparados com os metais convencionais. Tais características, quando requeridas, tornam este material ideal para aplicações estruturais. Esta caminhada de sucesso iniciou desde muito cedo, quando o material compósito já era utilizado para fabrico de armas pelos mongóis e na construção civil pelos hebreus e egípcios, contudo, só a partir dos meados do século XX é que despertou interesses para aplicações mais modernas. Atualmente os materiais compósitos são utilizados em equipamentos domésticos, componentes elétricos e eletrónicos, passando por materiais desportivos, pela indústria automóvel e construção civil, até indústrias de grande exigência e visibilidade tecnológica como a aeronáutica, espacial e de defesa. Apesar das boas características apresentadas pelos materiais compósitos, no entanto, estes materiais têm tendência a perderem as suas propriedades quando submetidas a algumas operações de acabamento como a furação. A furação surge da necessidade de ligação de peças de um mesmo mecanismo. Os furos obtidos por este processo devem ser precisos e sem danos para garantir ligações de alta resistência e também precisas. A furação nos materiais compósitos é bastante complexa devido à sua heterogeneidade, anisotropia, sensibilidade ao calor e pelo facto de os reforços serem extremamente abrasivos. A operação de furação pode causar grandes danos na peça, como a delaminação a entrada, defeitos de circularidade do furo, danos de origem térmica e a delaminação à saída que se apresenta como o mais frequente e indesejável. Com base nesses pressupostos é que este trabalho foi desenvolvido de forma a tentar obter processos simples para determinação e previsão de danos em polímeros reforçados com fibras (de carbono neste caso) de forma a precavê-los. De forma a conseguir estes objetivos, foram realizados ensaios de início de delaminação segundo a proposta de Lachaud et al. e ensaios de pin-bearing segundo a proposta de Khashaba et al. Foram também examinadas extensões de danos de acordo com o modelo de Fator de delaminação ajustado apresentado por Davim et al. A partir dos ensaios, de pin-bearing, realizados foram analisadas influências do material e geometria da broca, do avanço utilizado na furação e de diferentes orientações de empilhamentos de placas na delaminação de laminados compósitos e ainda a influências dessas variáveis na força de rutura por pin-bearing. As principais conclusões tiradas daqui são que a delaminação aumenta com o aumento do avanço, o que já era esperado, as brocas em carboneto de tungsténio são as mais recomendas para a furação do material em causa e que a delaminação é superior para a placa cross-ply quando comparada com placas unidirecionais. Para a situação de ensaios de início de delaminação foram analisadas as influências da variação da espessura não cortada por baixo da broca/punção, de diferentes geometrias de brocas, da alteração de velocidade de ensaio e diferentes orientações de empilhamentos de placas na força de início de delaminação. Deste ensaio as principais conclusões são que a força de início de delaminação aumenta com o aumenta da espessura não cortada e a influência da velocidade de ensaio altera com a variação das orientações de empilhamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os compósitos inteligentes de matriz metálica (CIMM) têm sido intensamente explorados nas últimas décadas devido à capacidade destes sistemas poderem alterar as suas propriedades mediante um estímulo externo. As ligas de Níquel-Titânio (Ni-Ti) são materiais inteligentes e desempenham, maioritariamente, funções de atuação ou controlo de vibrações nos sistemas em que se inserem, permitindo que estes apresentem características funcionais. A soldadura por fricção linear (SFL) tem sido uma alternativa aos processos de soldadura por fusão para materiais difíceis de soldar como as ligas de alumínio (AA) ou ainda na ligação de materiais dissimilares. No entanto, devido à ocorrência de defeitos, gerados como consequência do deficiente fluxo visco-plástico produzidos pela SFL, surgiram novas variantes deste processo, como a SFL assistida por corrente elétrica (SFLACE), que, por efeito de Joule, provoca o aquecimento do material processado e, consequente, aumento do fluxo visco-plástico, diminuindo ou eliminando a presença de defeitos. Este trabalho incide na produção de CIMM utilizando chapas de AA1100 reforçadas com Ni-Ti por SFLACE em configuração de junta sobreposta. As interfaces e os fluxos de material resultantes foram analisados recorrendo às técnicas de microscopia ótica (MO), SEM, EDS e difração de raio-x (DRX). O controlo de vibrações do CIMM produzido foi também estudado através de ensaios de vibração à temperatura ambiente, bem como a temperaturas superiores à de fim da formação da fase austenítica, e efetuaram-se ensaios de flexão e pull-out com vista à caracterização mecânica. Observou-se que o compósito produzido apresenta um fator de amortecimento superior quando o reforço se encontra na fase martensítica. O ensaio de pull-out confirmou a existência da ligação entre a matriz e o reforço, igualmente observada por SEM. O compósito produzido apresenta uma forte ligação entre os materiais dissimilares, com franca melhoria no caso das amostras processadas com corrente elétrica, obtendo-se um material com características funcionais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A necessidade de manutenção e reabilitação de estruturas de madeira antigas é, nos dias de hoje, um aspeto bastante importante a nível mundial. Assim, o estudo da eficácia de alguns sistemas de reforço torna-se fulcral. A presente dissertação é um estudo experimental sobre reforço de estruturas de madeira com materiais compósitos. Os materiais compósitos utilizados na componente experimental foram polímeros reforçados com fibras de carbono (CFRP – Carbon Fiber Reinforced Polymer) e estes foram colados ao substrato de madeira com resina epoxídica. O estudo experimental foi composto por duas fases. Na primeira fase realizaram-se ensaios de corte simples e na segunda fase ensaios de flexão. Os ensaios de corte simples foram realizados de modo a estudar a ligação CFRP-madeira e a analisar a influência do comprimento colado de CFRP ao substrato de madeira. Para tal, utilizaram-se duas técnicas de reforço, a técnica EBR (Externally Bonded Reinforcement) em que os laminados de CFRP são colados exteriormente e a técnica NSM (Near Surface Mounted) em que os laminados de CFRP são colados numa ranhura feita no provete de madeira. Foram realizados 17 ensaios de corte simples, 10 com a técnica EBR e 7 com a técnica NSM. Na segunda fase, foram realizados 3 ensaios de flexão sobre pavimentos de madeira reforçados com laminados de CFRP. Para estes ensaios também se utilizaram duas técnicas de reforço, a técnica EBR e uma técnica em que o laminado de FRP é ancorado nas extremidades das vigas. Numa fase final os resultados foram analisados e comparados de modo a tirar conclusões. Concluíu-se que a técnica de reforço NSM apresenta um desempenho superior à técnica EBR nos ensaios de corte simples. Comparativamente à técnica EBR, os pavimentos de madeira com o laminado de CFRP ancorado nas extremidades das vigas apresentaram um melhor desempenho.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Orientación en Procesos Sustentables) UANL, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Mecánica con especialidad en Materiales) UANL, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures