989 resultados para Compósitos Nb-Cu


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The confusion over the growth rate of the Nb3Sn superconductor compound following the bronze technique is addressed. Furthermore, a possible explanation for the corrugated structure of the product phase in the multifilamentary structure is discussed. Kirkendall marker experiments are conducted to study the relative mobilities of the species, which also explains the reason for finding pores in the product phase layer. The movement of the markers after interdiffusion reflects that Sn is the faster diffusing species. Furthermore, different concentrations of Sn in the bronze alloy are considered to study the effect of Sn content on the growth rate. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Nb-Cu pseudoalloys present themselves as potential substitutes for the alloys from a well known system and already commercially applied, as the W-Cu alloys, used in applications such as heat sinks, electrical contacts and coils for the generation of high magnetic fields. Because it is an immiscible system, where there is mutual insolubility and low wettability of the liquid Cu on the Nb surface, the processing route used in this work was the Powder Metallurgy. Two Nb alloys were used, with additions of 10% and 20% in weight of Cu, and times of 20, 30 and 40 hours for the high energy milling of the starting powders. The milling evolution of the powders is presented through the characterization techniques, such as the LASER diffraction for particle size, XRD, SEM, EDS, DSC, dilatometry, TEM and chemical analysis. After the milling, portions of the loads were submitted to the annealing heat treatment. The process used for the samples consolidation was the hot pressing, which has been applied both on some milled powders samples, as on the annealed powders. Subsequent heat treatments were performed in the samples at temperatures of 1000ºC (solid phase) and 1100ºC (in the Cu liquid phase). All sets of consolidated samples, and also the two sets of the heat treated, were analyzed by XRD, SEM, EDS, density and Vickers microhardness. Moreover, other Nb powder samples with 10% and 20% in weight of Cu obtained by simple mechanical mixing, were consolidated, thermally treated and characterized with the same techniques applied to the others, and the results were compared among themselves. Despite the difficulty of consolidation and densification of the two pseudoalloys of the Nb-Cu system of this study, on the route that passes through the HEM, samples were obtained with densities around 90% of the theoretical density. And, on the processing route of which were only mixed, the values reached up to 97%. Therefore, in this work are also emphasized the processes that made possible these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

90.00% 90.00%

Publicador:

Resumo:

在Y-Ba-Cu-Nb-O系统中,当Nb的含量较低时(x≤0.3),没有发现其晶格常数和超导转变温度Tc有明显变化,掺Nb能形成YBa_2NbO_6,BaNbO_3等;YBa_2NbO_6的新相比YBCO优先形成。当Nb含量x≥0.3时,少量的Nb进入123相的晶格,这种情况使b-轴变短,斜方变形加大,且Tc降低。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is great difficulty in forming a composite refractory metal niobium with copper. This is due to the fact that Nb-Cu system is almost mutually immiscible and may be neglected solubility between them. These properties hinder or prevent obtaining homogeneous and high-density structures, conventionally prepared. This study aims to analyze the use of high-energy milling process (MAE) to implement these natural difficulties, with regard to the densification of the sintered bodies. The MAE and the press were used in the preparation of powders, to obtain a fine and homogeneous distribution of the grain size. Four loads Nb and Cu powders containing 15% by weight of Cu were then milled for MAE in a planetary type ball mill under various milling times and speeds. The results obtained by MAE were analyzed by scanning electron microscopy (SEM), according to the parameters of time and grinding speed. The samples were compacted under pressure of 200 MPa, were then sintered in liquid phase in a vacuum furnace at temperatures of 1100 ° C / 60 min and 1200 ° C / 60 min. Then it was used to characterize diffraction of X-rays to identify the phases. The microstructures of the sintered samples were observed and evaluated using scanning electron microscopy (SEM). Vickers Microhardness tests were performed, obtaining higher values for the sintered bodies in the largest of the post milling times and the larger grinding speeds. It was found that the liquid phase sintering of the samples that were processed by MAE produced at the end of a homogeneous and densified structure in 77,4% relative to the value of the theoretical density of the composite

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cu-Al2O3 composite ceramic combines the phase of alumina, which is extremely hard and durable, yet very brittle, to metallic copper phase high ductility and high fracture toughness. These characteristics make this material a strong candidate for use as a cutting tool. Al2O3-Cu composite powders nanocrystalline and high homogeneity can be produced by high energy milling, as well as dense and better mechanical structures can be obtained by liquid phase sintering. This work investigates the effect of high-energy milling the dispersion phase Al2O3, Cu, and the influence of the content of Cu in the formation of Cu-Al2O3 composite particles. A planetary mill Pulverisatte 7 high energy was used to perform the experiments grinding. Al2O3 powder and Cu in the proportion of 5, 10 and 15% by weight of Cu were placed in a container for grinding with balls of hard metal and ethyl alcohol. A mass ratio of balls to powder of 1:5 was used. All powders were milled to 100 hours, and powder samples were collected after 2, 10, 20, 50 and 70 hours of grinding. Composite powders with compact cylindrical shape of 8 mm diameter were pressed and sintered in uniaxial matrix resistive furnace to 1200, 1300 to 1350 °C for 60 minutes under an atmosphere of argon and hydrogen. The heating rate used was 10°C/min. The powders and structures of the sintered bodies were characterized by XRD, SEM and EDS. Analysis TG, DSC and particle size were also used to characterize the milled powders, as well as dilatometry was used to observe the contraction of the sintered bodies. The density of the green and sintered bodies was measured using the geometric method (mass / volume). Vickers microhardness with a load of 500 g for 10 s were performed on sintered structures. The Cu-Al2O3 composite with 5% copper density reached 61% of theoretical density and a hardness of 129 HV when sintered at 1300 ° C for 1h. In contrast, lower densities (59 and 51% of the theoretical density) and hardness (110 HV and 105) were achieved when the copper content increases to 10 and 15%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate planar Josephson junctions where the intermediate spacer between the two superconductors is an hybrid structure made by a normal metal and a ferromagnet. The different behaviors of the S-N-S junctions with thicknesses of 50 nm in both Cu and Nb layers, and S-N/F-S junctions with 10 nm of Co, 50 nm of Cu and 50 nm of Nb are studied. In this way, we analyze the influence of the ferromagnetic exchange interaction on the proximity effect. A dramatic supression of the josephson critical current of the Nb-(Cu/Co)-Nb junctions is observed. We believe that the reason for this is due to the length scale of the superconducting correlations of the electrons and holes of the weak link is larger than the thickness of Cu/Co bilayer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

VIII Congreso geológico de España, Oviedo, 17-19 julio 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nb3Sn growth following the bronze technique, (i.e. by interdiffusion between Cu(Sn) alloy (bronze) and Nb) is one of the important methodologies to produce this superconductor. In this study, we have addressed the confusion over the growth rate of the Nb3Sn phase. Furthermore, a possible explanation for the corrugated layer in the multifilamentary structure is discussed. Kirkendall marker experiments were conducted to study the relative mobilities of the species, which also explained the reason for finding pores in the product phase layer. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined. We have further explained the dramatic increase in the growth rate of the prod

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(Zr65Al10Ni10Cu15)(100-x) Nb-x glass forming alloys with Nb contents ranging from 0 to 15 at.% were prepared by water-cooled copper mould cast. The alloys with different Nb contents exhibited different microstructures and mechanical properties. Unlike the monolithic Zr65Al10Ni10Cu15 bulk metallic glass, only a few primary bee beta-Ti phase dendrites were found to distribute in the glassy matrix of the alloys with x = 5. For alloys with x = 10, more beta-phase dendrites forms, together with quasicrystalline particles densely distributed in the matrix of the alloys. For alloys with x = 15, the microstructure of the alloy is dominated by a high density of fully developed P-phase dendrites and the volume fraction of quasicrystalline particles significantly decreases. Room temperature compression tests showed that the alloys with x = 5 failed at 1793 MPa and exhibited an obvious plastic strain of 3.05%, while the other samples all failed in a brittle manner. The ultimate fracture strengths are 1793, 1975 and 1572 MPa for the alloys with x = 0, 10 and 15 at.% Nb, respectively.