997 resultados para Community Metabolism
Resumo:
There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ? 35 mmol C/m**2/d and net calcification of ? 33 mmol C/m**2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.
Resumo:
Two methods are commonly used to measure the community metabolism (primary production, respiration, and calcification) of shallow-water marine communities and infer air–sea CO2 fluxes: the pH-total alkalinity and pH-O2 techniques. The underlying assumptions of each technique are examined to assess the recent claim that the most widely used technique in coral reefs (pH-total alkalinity), may have provided spurious results in the past because of high rates of nitrification and release of phosphoric acid in the water column [Chisholm, J. R. M. & Barnes, D. J. (1998) Proc. Natl. Acad. Sci. USA 95, 6566–6569]. At least three lines of evidence suggest that this claim is not founded. First, the rate of nitrification required to explain the discrepancy between the two methods recently reported is not realistic as it is much higher than the rates measured in another reef system and greater than the highest rate measured in a marine environment. Second, fluxes of ammonium, nitrate, and phosphorus are not consistent with high rates of nitrification and release of phosphoric acid. Third, the consistency of the metabolic parameters obtained by using the two techniques is in good agreement in two sites recently investigated. The pH-total alkalinity technique therefore appears to be applicable in most coral reef systems. Consequently, the conclusion that most coral reef flats are sources of CO2 to the atmosphere does not need revision. Furthermore, we provide geochemical evidence that calcification in coral reefs, as well as in other calcifying ecosystems, is a long-term source of CO2 for the atmosphere.
Resumo:
It is not certain whether coral reefs are sources of or sinks for atmospheric CO2. Air–sea exchange of CO2 over reefs has been measured directly and inferred from changes in the seawater carbonate equilibrium. Such measurements have provided conflicting results. We provide community metabolic data that indicate that large changes in CO2 concentration can occur in coral reef waters via biogeochemical processes not directly associated with photosynthesis, respiration, calcification, and CaCO3 dissolution. These processes can significantly distort estimates of reef calcification and net productivity and obscure the contribution of coral reefs to global air–sea exchange of CO2. They may, nonetheless, explain apparent anomalies in the metabolic performance of reefs close to land and reconcile the differing experimental findings that have given rise to the CO2 debate.
Resumo:
The effect of elevated pCO2 on the metabolism of a coral reef community dominated by macroalgae has been investigated utilizing the large 2650 m3 coral reef mesocosm at the Biosphere-2 facility near Tucson, Arizona. The carbonate chemistry of the water was manipulated to simulate present-day and a doubled CO2 future condition. Each experiment consisted of a 1-2 month preconditioning period followed by a 7-9 day observational period. The pCO2 was 404 ± 63 ?atm during the present-day pCO2 experiment and 658 ± 59 ?atm during the elevated pCO2 experiment. Nutrient levels were low and typical of natural reefs waters (NO3? 0.5-0.9 ?M, NH4+ 0.4 ?M, PO43? 0.07-0.09 ?M). The temperature and salinity of the water were held constant at 26.5 ± 0.2°C and 34.4 ± 0.2 ppt. Photosynthetically available irradiance was 10 ± 2 during the present-day experiment and 7.4 ± 0.5 mol photons m?2 d?1 during the elevated pCO2 experiment. The primary producer biomass in the mesocosm was dominated by four species of macroalgae; Haptilon cubense, Amphiroa fragillisima, Gelidiopsis intricata and Chondria dasyphylla. Algal biomass was 10.4 mol C m?2 during the present-day and 8.7 mol C m?2 and during the elevated pCO2 experiments. As previously observed, the increase in pCO2 resulted in a decrease in calcification from 0.041 ± 0.007 to 0.006 ± 0.003 mol CaCO3 m?2 d?1. Net community production (NCP) and dark respiration did not change in response to elevated pCO2. Light respiration measured by a new radiocarbon isotope dilution method exceeded dark respiration by a factor of 1.2 ± 0.3 to 2.1 ± 0.4 on a daily basis and by 2.2 ± 0.6 to 3.9 ± 0.8 on an hourly basis. The 1.8-fold increase with increasing pCO2 indicates that the enhanced respiration in the light was not due to photorespiration. Gross production (GPP) computed as the sum of NCP plus daily respiration (light + dark) increased significantly (0.24 ± 0.03 vs. 0.32 ± 0.04 mol C m?2 d?1). However, the conventional calculation of GPP based on the assumption that respiration in the light proceeds at the same rate as the dark underestimated the true rate of GPP by 41-100% and completely missed the increased rate of carbon cycling due to elevated pCO2. We conclude that under natural, undisturbed, nutrient-limited conditions elevated CO2 depresses calcification, stimulates the rate of turnover of organic carbon, particularly in the light, but has no effect on net organic production. The hypothesis that an increase pCO2 would produce an increase in net production that would counterbalance the effect of decreasing saturation state on calcification is not supported by these data.
Resumo:
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.
Resumo:
The aim of this study was to examine interrelationships between functional biochemical and microbial indicators of soil quality, and their suitability to differentiate areas under contrasting agricultural management regimes. The study included five 0.8 ha areas on a sandy-loam soil which had received contrasting fertility and cropping regimes over a 5 year period. These were organically managed vegetable, vegetable -cereal and arable rotations, an organically managed grass clover ley, and a conventional cereal rotation. The organic areas had been converted from conventional cereal production 5 years prior to the start of the study. All of the biochemical analyses, including light fraction organic matter (LFOM) C and N, labile organic N (LON), dissolved organic N and water-soluble carbohydrates showed significant differences between the areas, although the nature of the relationships between the areas varied between the different parameters, and were not related to differences in total soil organic matter content. The clearest differences were seen in LFOM C and N and LON, which were higher in the organic arable area relative to the other areas. In the case of the biological parameters, there were differences between the areas for biomass-N, ATP, chitin content, and the ratios of ATP: biomass and basal respiration: biomass. For these parameters, the precise relationships between the areas varied. However, relative to the conventionally managed area, areas under organic management generally had lower biomass-N and higher ATP contents. Arbuscular mycorrhizal fungus colonization potential was extremely low in the conventional area relative to the organic areas. Further, metabolic diversity and microbial community level physiological profiles, determined by analysis of microbial community metabolism using Biolog GN plates and the activities of eight key nutrient cycling enzymes, grouped the organic areas together, but separated them from the conventional area. We conclude that microbial parameters are more effective and consistent indicators of management induced changes to soil quality than biochemical parameters, and that a variety of biochemical and microbial analyses should be used when considering the impact of management on soil quality. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight/m**2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2/m**2/d, and there was a slight net dissolution of CaCO3 (0.8 mmol/m**2/d). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2/m**2/d), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.
Resumo:
The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.
Resumo:
Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium/hydrogen (D/H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor epsilon between fatty acids and water ranged between -172 per mil and -237 per mil, the algal-derived polyunsaturated fatty acid nC20:5 being the most D-depleted and nC18:0 the least D-depleted fatty acid. The D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The epsilon-lipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 PUFA, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative epsilon-lipid/water values) can be explained by an increased contribution by heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a useful tool to assess the community metabolism of coastal plankton.
Resumo:
We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Seawater carbonate chemistry during a Ishigaki Island (Japan) coral reef seasonal observations, 2005
Resumo:
Monitoring seawater CO2 for a full year with seasonal observations of community metabolism in Ishigaki Island, Japan, revealed seasonal variation and anomalous values owing to the bleaching event in 1998. The daily average pCO2 showed a seasonal pattern on an annual scale, 280 to 320 ?atm in winter and 360 to 400 ?atm in summer, which was determined primarily by the seasonal change in seawater temperature. By contrast, the range in the diel variation in pCO2, 400 to 500 ?atm in summer 200 to 300 ?atm in winter, was attributed to the seasonal variation in community metabolism: Gross primary production (P g ) and respiration (R) were high in summer and low in winter. During the 1998 bleaching event, although P g and R increased, community excess organic production (E) decreased by three quarters compared with the same month in 1999, when the coral community showed high recovery. This change in metabolism led to large diel range and increased average value of pCO2 levels in the seawater on the reef flat. The decrease in the range and increase in the average value of pCO2 were observed by monitoring the Palau barrier reef flat, where overall mortality of corals occurred after the bleaching. All the metabolic parameters, P g , R, E and calcification (G) were reduced by half after the bleaching, which increased the average pCO2 value by 10 ?atm and decreased its diel range from 200-400 ?atm to 100-200 ?atm. Bleaching and resultant mortality of coral reefs led to degradation of their metabolic performance, and thus resulted in the loss of their active interaction with the carbon cycle.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
The effect of increased CO2 partial pressure (pCO2) on the community metabolism (primary production, respiration, and calcification) of a coral community was investigated over periods ranging from 9 to 30 d. The community was set up in an open-top mesocosm within which pCO2 was manipulated (411, 647, and 918 µatm). The effect of increased pCO2 on the rate of calcification of the sand area of the mesocosm was also investigated. The net community primary production (NCP) did not change significantly with respect to pCO2 and was 5.1 ± 0.9 mmol O2 m-2 h-1, Dark respiration (R) increased slightly during the experiment at high pCO2, but this did not affect significantly the NCP:R ratio (1.0 ± 0.2). The rate of calcification exhibited the trend previously reported; it decreased as a function of increasing pCO2 and decreasing aragonite saturation state. This re-emphasizes the predictions that reef calcification is likely to decrease during the next century. The dissolution process of calcareous sand does not seem to be affected by open seawater carbonate chemistry; rather, it seems to be controlled by the biogeochemistry of sediment pore water.
Resumo:
The community metabolism of a shallow infralittoral ecosystem dominated by the calcareous macroalgae Corallina elongata was investigated in Marseilles (NW Mediterranean), by monitoring hourly changes of seawater pH and total alkalinity over 6 d in February 2000. Fair weather conditions prevailed over the study period as indicated by oceanographic (temperature, salinity, and current velocity and direction) and meteorological variables, which validated the standing water hypothesis. This temperate ecosystem exhibited high community gross primary production (GPP = 519 ± 106 mmol C m-2 d-1, n = 6) and also supported high rates of community respiration (R). As a result, the system was slightly autotrophic (net community production, NCP = 20 mmol C m-2 d-1), with a GPP/R ratio of 1.06. NCP exhibited circadian variations with 2- to 3-fold changes in community respiration, both in the light and in the dark. Rates of net community calcification also exhibited circadian variations, with positive rates (up to 24 mmol CaCO3 m-2 h-1) for irradiance values >300 W m-2 (about 1380 µmol photon m-2 s-1). Below this irradiance threshold, net community dissolution prevailed. Daily net calcification (G) was on average 8 mmol CaCO3 m-2 d-1. CO2 fluxes generated by primary production, respiration, and calcification suggest that the study site was a potential atmospheric CO2 sink of 15 mmol CO2 m-2 d-1 at the time of measurement.