997 resultados para Commercial vehicles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time and the distance traveled during the acceleration and the velocity retaking are parameters used for the comparison and the project of vehicles. In this paper equations for the calculation of those parameters are presented. Several criteria are presented for the shift gears. It is also verified the occurrence or not of total slip during the acceleration of the vehicle. The theoretical models were implemented in a developed computational system. Such system was applied in a Mercedes-Benz do Brazil sample vehicle, in order to facilitate comparisons between the simulate values and the experimental road tests. Copyright © 1997 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fuel consumption is an important factor in the vehicle development due the fact that it has a direct effect on its trade aims. Besides that, it is known that the petrol is a scarce fuel. In this paper it is presented a procedure of fuel consumption calculation for a vehicle traveling in driving schedule. In such calculation it has been taken into account the operational conditions (load, pavement, climbing road, among others) and the building characteristics (map engine, transmission, frontal area, tire, among others) of road vehicles. There has also been an application of the theoretical model developed in a sample Mercedes-Benz do Brasil vehicle which has been compared with the values of experimental tests. Copyright © 1997 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is to make a prospective analysis about the tendencies of the world wide strategies of commercial vehicles development, in relation of the current local and international scenery. It has been done a research by using the Delphi method, which consists into regulate, systematically, the presentation of questions about a specified problem to a group of specialists. In order to guarantee more representative data, it has been adopted three distinct groups: academics, OEMs managers and Tier 1 suppliers managers. The results showed that the three mentioned groups have similar opinion about the necessity of having a product development in the subsidiaries companies; also it has been pointed the necessity of having more taylor made vehicles, due to the intrinsic characteristics of this industry segment. Copyright © 2008 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper discusses road damage caused by heavy commercial vehicles. Chapter 1 presents some important terminology and a brief historical review of road construction and vehicle-road interaction, from ancient times to the present day. The main types of vehicle-generated road damage, and the methods that are used by pavement engineers to analyze them are discussed in Chapter 2. Attention is also given to the main features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Chapter 3 reviews the effects on road damage of vehicle features which can be studied without consideration of vehicle dynamics. These include gross vehicle weight, axle and tire configurations, tire contact conditions and static load sharing in axle group suspensions. The dynamic tire forces generated by heavy vehicles are examined in Chapter 4. The discussion includes their simulation and measurement, their principal characteristics, the effects of tires and suspension design on dynamic forces, and the potential benefits of using advanced suspensions for minimizing dynamic tire forces. Chapter 5 discusses methods for estimating the effects of dynamic tire forces on road damage. The two main approaches are either to examine the statistics of the forces themselves; or to calculate the response of a pavement model to the forces, and to calculate the resulting wear using a material damage model. The issues involved in assessing vehicles for 'road friendliness' are discussed in Chapter 6. Possible assessment methods include measuring strains in an instrumented pavement traversed by the vehicle, measuring dynamic tire forces, or measuring vehicle parameters such as the 'natural frequency' and 'damping ratio'. Each of these measurements involves different assumptions and analysis methods for converting the results into some measure of road damage. Chapter 7 includes a summary of the main conclusions of the paper and recommendations for tire and suspension design, road design and construction, and for vehicle regulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The desire to reduce carbon emissions due to transportation sources has led over the past decade to the development of new propulsion technologies, focused on vehicle electrification (including hybrid, plug-in hybrid and battery electric vehicles). These propulsion technologies, along with advances in telecommunication and computing power, have the potential of making passenger and commercial vehicles more energy efficient and environment friendly. In particular, energy management algorithms are an integral part of plug-in vehicles and are very important for achieving the performance benefits. The optimal performance of energy management algorithms depends strongly on the ability to forecast energy demand from the vehicle. Information available about environment (temperature, humidity, wind, road grade, etc.) and traffic (traffic density, traffic lights, etc.), is very important in operating a vehicle at optimal efficiency. This article outlines some current technologies that can help achieving this optimum efficiency goal. In addition to information available from telematic and geographical information systems, knowledge of projected vehicle charging demand on the power grid is necessary to build an intelligent energy management controller for future plug-in hybrid and electric vehicles. The impact of charging millions of vehicles from the power grid could be significant, in the form of increased loading of power plants, transmission and distribution lines, emissions and economics (information are given and discussed for the US case). Therefore, this effect should be considered in an intelligent way by controlling/scheduling the charging through a communication based distributed control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Decreasing the accidents on highway and urban environments is the main motivation for the research and developing of driving assistance systems, also called ADAS (Advanced Driver Assistance Systems). In recent years, there are many applications of these systems in commercial vehicles: ABS systems, Cruise Control (CC), parking assistance and warning systems (including GPS), among others. However, the implementation of driving assistance systems on the steering wheel is more limited, because of their complexity and sensitivity. This paper is focused in the development, test and implementation of a driver assistance system for controlling the steering wheel in curve zones. This system is divided in two levels: an inner control loop which permits to execute the position and speed target, softening the action over the steering wheel, and a second control outer loop (controlling for fuzzy logic) that sends the reference to the inner loop according the environment and vehicle conditions. The tests have been done in different curves and speeds. The system has been proved in a commercial vehicle with satisfactory results.