923 resultados para Commercial real estate
Resumo:
In this paper we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Since the early work by Geltner (1989), many papers have been written on this topic but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraised-based index. To investigate this issue in more detail we analyse a sample of individual property level appraisal data from the Investment Property Database (IPD). We find that commonly used unsmoothing estimates overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns.
Resumo:
Depreciation is a key element of understanding the returns from and price of commercial real estate. Understanding its impact is important for asset allocation models and asset management decisions. It is a key input into well-constructed pricing models and its impact on indices of commercial real estate prices needs to be recognised. There have been a number of previous studies of the impact of depreciation on real estate, particularly in the UK. Law (2004) analysed all of these studies and found that the seemingly consistent results were an illusion as they all used a variety of measurement methods and data. In addition, none of these studies examined impact on total returns; they examined either rental value depreciation alone or rental and capital value depreciation. This study seeks to rectify this omission, adopting the best practice measurement framework set out by Law (2004). Using individual property data from the UK Investment Property Databank for the 10-year period between 1994 and 2003, rental and capital depreciation, capital expenditure rates, and total return series for the data sample and for a benchmark are calculated for 10 market segments. The results are complicated by the period of analysis which started in the aftermath of the major UK real estate recession of the early 1990s, but they give important insights into the impact of depreciation in different segments of the UK real estate investment market.
Resumo:
Whilst the vast majority of the research on property market forecasting has concentrated on statistical methods of forecasting future rents, this report investigates the process of property market forecast production with particular reference to the level and effect of judgemental intervention in this process. Expectations of future investment performance at the levels of individual asset, sector, region, country and asset class are crucial to stock selection and tactical and strategic asset allocation decisions. Given their centrality to investment performance, we focus on the process by which forecasts of rents and yields are generated and expectations formed. A review of the wider literature on forecasting suggests that there are strong grounds to expect that forecast outcomes are not the result of purely mechanical calculations.
Resumo:
The number of properties to hold to achieve a well-diversified real estate property portfolio presents a puzzle, as the estimated number is considerably higher than that seen in actual portfolios. However, Statman (1987) argues that investors should only increase the number of holdings as long as the marginal benefits of diversification exceed their costs. Using this idea we find that the marginal benefits of diversification in real estate portfolios are so small that investors are probably rational in holding small portfolios, at least as far as the reduction in standard deviation is concerned.
Resumo:
Investments in direct real estate are inherently difficult to segment compared to other asset classes due to the complex and heterogeneous nature of the asset. The most common segmentation in real estate investment analysis relies on property sector and geographical region. In this paper, we compare the predictive power of existing industry classifications with a new type of segmentation using cluster analysis on a number of relevant property attributes including the equivalent yield and size of the property as well as information on lease terms, number of tenants and tenant concentration. The new segments are shown to be distinct and relatively stable over time. In a second stage of the analysis, we test whether the newly generated segments are able to better predict the resulting financial performance of the assets than the old dichotomous segments. Applying both discriminant and neural network analysis we find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the two approaches to segmenting the market has its strengths and weaknesses so that both might be applied gainfully in real estate investment analysis and fund management.
Resumo:
In this article, we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Many articles have been written on appraisal smoothing but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraisal-based index. To investigate this issue we analyze a large sample of appraisal data at the individual property level from the Investment Property Databank. We find that commonly used unsmoothing estimates at the index level overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns at the index level and an ARMA model at the individual property level.