999 resultados para Commercial purity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size and deformation temperature on the behavior of wire-drawn a-Ti during compression has been examined. At strains of 0.3, the flow stress exhibited a negative Hall–Petch slope. This is proposed to result from the prevalence of twinning during the compressive deformation. Electron backscattered diffraction revealed that {1012} was the most prolific twin type across all the deformation temperatures and grain sizes examined. Of the twinning modes observed, {1122} twinning was the most sensitive to the grain size and deformation temperature. The range of morphologies exhibited by deformation twins is also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data collection contains several optical microstructure images, EBSD maps and stress-strain curves. The research involves collecting data from samples with different grain sizes at several values of plastic strains to measure some important twinning parameters such as twin volume fraction and number of twins per grain. The aim of this study is to investigate the effect of grain size on deformation twinning behaviour in two hcp metals i.e. commercial purity titanium and AZ31 magnesium alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study contrasts the extent to which laboratory and industrial scale variants of equal channel angular pressing (ECAP) impart desirable microstructures and mechanical properties in Grades 2 and 4 titanium. Industrial-scale ECAP-Conform (ECAP-C) with post-ECAP thermo-mechanical processing (TMP) enhanced performance levels beyond those achieved with the same material processed in the laboratory by ECAP only. ECAP-C processed titanium demonstrated exceptional tensile properties and fatigue strength, superior even to conventional Ti-6Al-4V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High fatigue strength is one of the major requirements for dental implant materials. It was previously shown that the fatigue strength under conventional stress-control tension–compression testing can be doubled for commercially pure (CP) titanium processed by equal channel angular pressing. However, the fatigue endurance of an implant exposed to cyclic loading in corrosive media (bodily fluids) may potentially be compromised. In this work, non-conventional bending fatigue testing in air and in simulated body fluid (SBF) has been carried out for coarse-grained and ultrafine-grained CP titanium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chips produced by turning a commercial purity magnesium billet were cold compacted and then hot extruded at four different temperatures: 250, 300, 350, and 400 degrees C. Cast billets, of identical composition, were also extruded as reference material. Chip boundaries, visible even after 49: 1 extrusion at 400 degrees C, were observed to suppress grain coarsening. Although 250 degrees C extruded chip-consolidated product showed early onset of yielding and lower ductility, fully dense material (extruded at 400 degrees C) had nearly 40% reduction in grain size with 22% higher yield strength and comparable ductility as that of the reference. The study highlights the role of densification and grain refinement on the compression behavior of chip consolidated specimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, the effect of deformation mode (uniaxial compression, rolling and torsion) on the microstructural heterogeneities in a commercial purity Ni is reported. For a given equivalent von Mises strain, samples subjected to torsion have shown higher fraction of high-angle boundaries, kernel average misorientation and recrystallization nuclei when compared to uniaxially compressed and rolled samples. This is attributed to the differences in the slip system activity under different modes of deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

通过高压扭转对铜试样施加不同程度的变形,研究了样品扭转面(ND面)和纵截面(TD面)上微观组织特征.对ND面,在较小的剪应变下,原始晶粒形貌模糊,晶粒内部形成等轴状的位错胞及亚晶结构;随变形量的增大,亚晶间取向差及亚晶内部的位错密度增大,最后形成亚微米尺度的等轴晶粒.对TD面,变形初期原始晶粒被拉长,晶粒内部为位错墙分割成的层状结构,层内为拉长的位错胞;随变形程度的增大,拉长晶粒的宽度减小,与剪切方向的夹角减小,晶内层状组织间距减小,并逐渐演化成拉长的亚晶组织;进一步增大变形,晶粒拉长痕迹消失,变形组织与ND面相似,为等轴状亚微米晶粒.压缩实验表明,经16圈扭转后,整个试样上的压缩性能基本均匀,σ0.2达到385MPa,应变率敏感性指数增大至0.021.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pin-on-disc apparatus has been used to investigate the wear and friction (sliding force) behavior of metals on bonded silicon carbide and alumina papers under conditions of controlled atmospheric composition. The wear rates of both commercial purity titanium and the alloy Ti-6%Al-4%V tested in air were found to remain constant with time, in contrast with the behavior of other metals tested under similar conditions, which exhibited a progressive decrease in wear rate with increasing number of passes along the same track. It is proposed that the concentration of interstitial nitrogen and oxygen in the worn metal surface, which largely determines its mechanical properties, strongly influences both the ductility of the abraded material and the force of adhesion between the metal and the abrasive particles. Parallels are drawn between abrasive wear and machining to illustrate the importance of oxygen at the interface between workpiece and tool surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface finish is an important factor in creating the durable metal components, and fatigue strength can be improved if compressive residual stresses are produced in the surface. Burnishing is a finishing process and compressive residual stresses are induced during the process. The present study of minimizing the surface roughness based on the experimental work, and finite element model was developed to evaluate the analytical results. Commercial purity Mild Steel and Aluminium were selected as work specimens and a high carbon high chromium roller was used as a tool for the burnishing process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of grain size on deformation twinning in commercial purity titanium and magnesium alloy Mg–3Al–1Zn (AZ31) is investigated. Tensile tests were carried out for the titanium samples; compression testing was employed for the magnesium specimens. Average values of the true twin length, true twin thickness and the number density of twins were determined using stereology. A key difference between these two materials is that twinning contributes little to the plastic strain in the titanium while it accounts for nearly all of the early plastic strain in the magnesium. In some respects (e.g. volume fraction and number density) the phenomenology of twinning differed between the two materials, while in others (e.g. twin shape and size) both materials showed a similar response. It is found that in both materials, twins span the entirety of their parent grains only for grain sizes less than ∼30 μm. Both the nucleation density per unit of nucleating interface (i.e. grain and twin boundaries) and the aspect ratio of twins scale with applied stress. The impact of grain size on twin volume fraction is modelled analytically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First results are presented for a uniaxial tensile stage designed to operate on a scanning micro X-ray diffraction synchrotron beamline. The new tensile stage allows experiments at typical loading cycles used in standard engineering stress–strain tests. Several key features have been implemented to support in situ loading experiments at the intragranular length scale. The physical size and weight of the load cell were minimized to maintain the correct working distance for the X-ray focusing optics and to avoid overloading the high-resolution raster scan translation stages. A high-magnification optical microscope and image correlation code were implemented to enable automated online tracking capabilities during macroscopic elongation of the sample. Preliminary in situ tensile loading experiments conducted on beamline 12.3.2 at the Advanced Light Source using a polycrystalline commercial-purity Ti test piece showed that the elastic–plastic response of individual grains could be measured with submicrometre spatial resolution. The experiments highlight the unique instrumentation capabilities of the tensile stage for direct measurement of deviatoric strain and observation of dislocation patterning on an intragranular length scale as a function of applied load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercial purity aluminium plate was reduced by rolling under nitrogen in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Analysis of the microstructure showed that the material produced in this way had an ul-trafine grained microstructure. The sheet was roll formed at room temperature to a V-section using commercial roll forming equipment. Two sets of experiments were per-formed; one with a 15 mm radius in the base of the V and the other with a 5 mm radius. The performance in terms of final shape and springback is compared with the same part shape formed by V-die bending. The mechanical properties of the sheet were determined using the tensile test. It has been found that even if the total tensile elongation is close to zero and bending of the material is very limited, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrafine-grain aluminium sheet was produced by rolling at cryogenic (CR) and at room temperature (RTR). Commercial purity aluminium plate was reduced in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Tensile stress and strength were significantly increased while total elongation was drastically reduced. It was found that despite the low tensile elongation both materials are able to accommodate high localised strains in the neck leading to a high reduction in area. The formability of the material was further investigated in bending operations. A minimum bending radius of 6 mm (CR) and 5 mm (RTR) was found and pure bending tests showed homogeneous forming behaviour for both materials. In V-die bending the cryo-rolled material showed strain localisations across the final radius and kinking of the sample. It has been found that even if the total elongation in tension is close to zero leading to early failure in V-die bending, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes with small radii using commercial roll forming equipment.