994 resultados para Commercial building


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates and compares the system performance of a solar desiccant-evaporative cooling (SDEC) system with a referenced conventional variable air volume (VAV) system for a typical office building in all 8 Australian capital cities. A simulation model of the building is developed using the whole building simulation software EnergyPlus. The performance indicators for the comparison are system coefficient of performance (COP), annual primary energy consumption, annual energy savings, and annual CO2 emissions reduction. The simulation results show that Darwin has the most apparent advantages for SDEC system applications with an annual energy savings of 557 GJ and CO2 emission reduction of 121 tonnes. The maximum system COP is 7. For other climate zones such as Canberra, Hobart and Melbourne, the SDEC system is not as energy efficient as the conventional VAV system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate a carbon mitigation cost curve for the U.S. commercial sector based on econometric estimation of the responsiveness of fuel demand and equipment choices to energy price changes. The model econometrically estimates fuel demand conditional on fuel choice, which is characterized by a multinomial logit model. Separate estimation of end uses (e.g., heating, cooking) using the U.S. Commercial Buildings Energy Consumption Survey allows for exceptionally detailed estimation of price responsiveness disaggregated by end use and fuel type. We then construct aggregate long-run elasticities, by fuel type, through a series of simulations; own-price elasticities range from -0.9 for district heat services to -2.9 for fuel oil. The simulations form the basis of a marginal cost curve for carbon mitigation, which suggests that a price of $20 per ton of carbon would result in an 8% reduction in commercial carbon emissions, and a price of $100 per ton would result in a 28% reduction. © 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses long-term regional construction data to investigate whether increases infrastructure investment in the English regions leads to subsequent rises in housebuilding and new commercial property, using time series modeling. Both physical (roads and harbours) and social infrastructure (education and health) impacts are investigated across nine regions in England. Significant effects for physical infrastructure are found across most regions and, also, some evidence of a social infrastructure effect. The results are not consistent across regions, which may be due to geographical differences and to network and diversionary effects. However, the results do suggest that infrastructure does have some impact but follows differential lag structures. These results provide a test of the hypothesis of the economic benefits of infrastructure investment in an approach that has not been used before.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growing global concern regarding the rapid rate at which humans are consuming the earth’s precious natural resources is leading to greater emphasis on more effective means of providing for our current and future needs. Energy and fresh water are the most crucial of these basic human needs. The energy and water required in the operation of buildings is fairly well known. Much less is known about the energy and water embodied in construction materials and products. It has been suggested that embodied energy typically represents 20 times the annual operational energy of current Australian buildings. Studies have suggested that the water embodied in buildings may be just as significant as that of energy. As for embodied energy, these studies have been based on traditional analysis methods, such as process and input-output analysis. These methods have been shown to suffer from errors relating to the availability of data and its reliability. Hybrid methods have been developed in an attempt to provide a more reliable assessment of the embodied energy and water associated with the construction of buildings. This paper evaluates the energy and water resources embodied in a commercial office building using a hybrid analysis method based on input-output data. It was found that the use of this hybrid analysis method increases the reliability and completeness of an embodied energy and water analysis of a typical commercial building by 45% and 64% respectively, over traditional analysis methods. The embodied energy and water associated with building construction is significant and thus represents an area where considerable energy and water savings are possible over the building life-cycle. These findings suggest that current best-practice methods of embodied energy and water analysis are sufficiently accurate for most typical applications, but this is heavily dependent upon data quality and availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of two 60 m2 solar air heaters serving a large studio teaching space has been monitored for a twelve month period. The solar contribution of the heaters was found to be less than 5%, and in some instances the heaters actually contributed to the space heating load. A validated mathematical model of the studio and it’s heating, ventilation and air conditioning system was used to investigate performance improvement strategies. It was found a different control strategy and recommissioned control sensors would substantially improve the solar air heater performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examined the inclusion of environmental rating tools in the design of commercial buildings. Environmental issues are becoming increasingly important for designers and the results of the study suggest that rating tools can be an asset to design teams, provided they are integrated and reinforced throughout the design process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The projects studied for this thesis show that the more the façades match the values, tastes, and needs of its target individuals, the more frequently the place will be visited. They endow it with a sense of place and uniqueness and create an emotional bond with the individuals. The intent of this research was to derive a framework of principles to be used in the design of façades, and to establish a relationship between the facade, human scale, urban context, and building. The methodology for developing this framework is based on the analysis of building façades from the Renaissance to current examples of New York Times Square. The principles were generated from strategies of the case studies analyzed. Principles of monumentality, symbolism, and iconography were used to perceive façades as essential forms of architecture. The scale of facades emphasizes human dimensions. In turn, the façade is a device of communication to inform individuals, and its impact on retelling culture for a city.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reducing energy use in tenanted commercial property requires a greater understanding of ‘buildings as communities’. Tenanted commercial properties represent: (1) the divergent communities that share specific buildings; and (2) the organizational communities represented by multi-site landlord and tenant companies. In any particular tenanted space the opportunity for environmental change is mediated (hindered or enabled) through the lease. This discussion draws on theoretical and practical understandings of (1) the socio-legal relationships of landlords, tenants and their advisors; (2) the real performance of engineering building services strategies to improve energy efficiency; (3) how organizational cultures affect the ability of the sector to engage with energy-efficiency strategies; and (4) the financial and economic basis of the relationship between owners and occupiers. The transformational complexity stems from: (1) the variety of commercial building stock; (2) the number of stakeholders (solicitors, investors, developers, agents, owners, tenants and facilities managers); (3) the fragmentation within the communities of practice; and (4) leasehold structures and language. An agenda is proposed for truly interdisciplinary research that brings together both the physical and the social sciences of energy use in buildings so that technological solutions are made effective by an understanding of the way that buildings are used and communities behave.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.