976 resultados para Combined cycle power plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demand for power is growing every day, mainly due to emerging economies in countries such as China, Russia, India, and Brazil. During the last 50 years steam pressure and temperature in power plants have been continuously raised to improve thermal efficiency. Recent efforts to improve efficiency leads to the development of a new generation of heat recovery steam generator, where the Benson once-through technology is applied to improve the thermal efficiency. The main purpose of this paper is to analyze the mechanical behavior of a high pressure superheater manifold by applying finite element modeling and a finite element analysis with the objective of analyzing stress propagation, leading to the study of damage mechanism, e.g., uniaxial fatigue, uniaxial creep for life prediction. The objective of this paper is also to analyze the mechanical properties of the new high temperature resistant materials in the market such as 2Cr Bainitic steels (T/P23 and T/P24) and also the 9-12Cr Martensitic steels (T/P91, T/P92, E911, and P/T122). For this study the design rules for construction of power boilers to define the geometry of the HPSH manifold were applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, is presented an economical and technical feasibility study of a combined cycle cogeneration system proposed to be used in a pulp plant located in Brazil, where around 95% of country's pulp production is done by the use of Kraft Process. This process allows the use of black liquor and other by-products as fuel. This study is based upon actual data from a pulp plant with a daily production of 1000 tons., that generates part of the energy demanded by the process in a conventional cogeneration system with condensing steam turbine and two extractions. The addition of a gas turbine was studied to compare electricity production level and its related costs between original system and the new one, considering that the former can use industrial by-products and firewood as fuel, when required. Several parameters related to electric generation systems operation and production costs were studied. The use of natural gas in the combined cycle, in comparison with the use of firewood in the conventional system was studied. The advantages of natural gas fuel are highlighted. The surplus availability and the electricity generation costs are presented as a function of pulp and black liquor production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El sector energético, en España en particular, y de forma similar en los principales países de Europa, cuenta con una significativa sobrecapacidad de generación, debido al rápido y significativo crecimiento de las energías renovables en los últimos diez años y la reducción de la demanda energética, como consecuencia de la crisis económica. Esta situación ha hecho que las centrales térmicas de generación de electricidad, y en concreto los ciclos combinados de gas, operen con un factor de utilización extremadamente bajo, del orden del 10%. Además de la reducción de ingresos, esto supone para las plantas trabajar continuamente fuera del punto de diseño, provocando una significativa pérdida de rendimiento y mayores costes de explotación. En este escenario, cualquier contribución que ayude a mejorar la eficiencia y la condición de los equipos, es positivamente considerada. La gestión de activos está ganando relevancia como un proceso multidisciplinar e integrado, tal y como refleja la reciente publicación de las normas ISO 55000:2014. Como proceso global e integrado, la gestión de activos requiere el manejo de diversos procesos y grandes volúmenes de información, incluso en tiempo real. Para ello es necesario utilizar tecnologías de la información y aplicaciones de software. Esta tesis desarrolla un concepto integrado de gestión de activos (Integrated Plant Management – IPM) aplicado a centrales de ciclo combinado y una metodología para estimar el beneficio aportado por el mismo. Debido a las incertidumbres asociadas a la estimación del beneficio, se ha optado por un análisis probabilístico coste-beneficio. Así mismo, el análisis cuantitativo se ha completado con una validación cualitativa del beneficio aportado por las tecnologías incorporadas al concepto de gestión integrada de activos, mediante una entrevista realizada a expertos del sector de generación de energía. Los resultados del análisis coste-beneficio son positivos, incluso en el desfavorable escenario con un factor de utilización de sólo el 10% y muy prometedores para factores de utilización por encima del 30%. ABSTRACT The energy sector particularly in Spain, and in a similar way in Europe, has a significant overcapacity due to the big growth of the renewable energies in the last ten years, and it is seriously affected by the demand decrease due to the economic crisis. That situation has forced the thermal plants and in particular, the combined cycles to operate with extremely low annual average capacity factors, very close to 10%. Apart from the incomes reduction, working in out-of-design conditions, means getting a worse performance and higher costs than expected. In this scenario, anything that can be done to improve the efficiency and the equipment condition is positively received. Asset Management, as a multidisciplinary and integrated process, is gaining prominence, reflected in the recent publication of the ISO 55000 series in 2014. Dealing Asset Management as a global, integrated process needs to manage several processes and significant volumes of information, also in real time, that requires information technologies and software applications to support it. This thesis proposes an integrated asset management concept (Integrated Plant Management-IPM) applied to combined cycle power plants and develops a methodology to assess the benefit that it can provide. Due to the difficulties in getting deterministic benefit estimation, a statistical approach has been adopted for the cot-benefit analysis. As well, the quantitative analysis has been completed with a qualitative validation of the technologies included in the IPM and their contribution to key power plant challenges by power generation sector experts. The cost- benefit analysis provides positive results even in the negative scenario of annual average capacity factor close to 10% and is promising for capacity factors over 30%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical-looping combustion allows an integration of CO2 capture in a thermal power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. This paper focus on the study of the energetic performance of this concept of combustion in an integrated gasification combined cycle power plant when synthesis gas is used as fuel for the gas turbines. After thermodynamic modelling and optimization of some cycle parameters, the power plant performance is evaluated under diverse working conditions and compared to a conventional integrated gasification combined cycle with precombustion capture. Energy savings in CO2 capture and storage has been quantified. The overall efficiency increase is found to be significant and even notable, reaching values of around 7%. In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voimalaitoksen sisäisellä optimoinnilla pyritään parantamaan prosessia ja lisäämään voimalaitoskonseptin kilpailukykyä energiamarkkinoilla. Tässä työssä optimoitiin lisäpoltolla varustettua, sähköteholtaan noin 125 MW:n maakaasukompivoimalaitosta. Työ on osa Fortum Engineering Oy:n konseptikehitysohjelmaa. Kaasuturbiinin savukaasun sisältämää happea voidaan hyödyntää lämmöntal-teenottokattilan savukaasukanavaan sijoitetussa lisäpoltossa. Lisäpoltolla saadaan nostettua savukaasun lämpötilaa ja lisättyä tuotetun tuorehöyryn määrää. Työssä tutkittiin lisäpolton kannattavuutta ja sen vaikutusta voimalaitoksen mitoitukseen. Lisäpolton lämpötila valitaan teknisten rajoitusten perusteella, jolloin siitä aiheutuvat investointikustannukset eivät nouse merkittäviksi. Optimointimenetelmä pohjautuu Fortum Oyj:ssä kehitetyllä voimalaitossimulaattori Solvolla laskettujen lämpötaseiden ja asiantuntija-arvioihin perustuvien investointikustannuskaavojen käyttöön. Taloudelliset lähtöarvot on valittu Itä-Euroopan markkinatilanteen mukaisiksi. Kannattavuuslaskelmat perustuvat nykyarvomenetelmään, jossa investointikustannuksille ja sähkön ja kaukolämmön myynnistä saaduille tuotoille lasketaan nykyarvo. Teknisten rajoitusten puitteissa suurimman nykyarvon antava tapaus on aina kunkin tutkittavan prosessisuureen optimitapaus. Tutkittavia prosessisuureita voivat olla esimerkiksi tuorehöyryn tila-arvot. Eräs työn tavoitteista oli selvittää lämmöntalteenottokattilan painetasojen optimaalinen lukumäärä. Lisäpoltto todettiin lämmitysvoimalaitoksella kannattavaksi ratkaisuksi kun nyt optimoitua laitosta verrattiin ilman lisäpolttoa mitoitettuun vastaavanlaiseen laitokseen. Kannattavuuslaskelmille tehtiin herkkyystarkastelut, joiden avulla tutkittiin mitoitetun konseptin herkkyyttä taloudellisten lähtöarvojen muutoksille. Herkkyysanalyysin avulla optimoitua voimalaitoskonseptia voidaan hyödyntää suuremmalla taloudellisten lähtöarvojen vaihteluvälillä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban centers have a huge demand for electricity and the growing problem of the solid waste management generated by their population, a relevant social and administrative problem. The correct disposal of the municipal solid waste (MSW) generated in cities is one of the most complex engineering problems that involves logistics, safety, environmental and energetic aspects for its adequate management. Due to a national policy of solid wastes recently promulgated, Brazilian cities are evaluating the technical and economic feasibility of incinerating the non-recyclable waste. São José dos Campos, a São Paulo State industrialized city, is considering the composting of organic waste for biogas production and mass incineration of non-recyclable waste. This paper presents a waste-to-energy system based on the integration of gas turbines to a MSW incinerator for producing thermal and electric energy as an alternative solution for the solid waste disposal in São José dos Campos, SP. A technical and economic feasibility study for the hybrid combined cycle plant is presented and revealed to be attractive when carbon credit and waste tax are included in the project income. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.