965 resultados para Colorimetric assay
Resumo:
Mushroom strains contain complex nutritional biomolecules with a wide spectrum of therapeutic and prophylactic properties. Among these compounds, β-d-glucans play an important role in immuno-modulating and anti-tumor activities. The present work involves a novel colorimetric assay method for β-1,3-d-glucans with a triple helix tertiary structure by using Congo red. The specific interaction that occurs between Congo red and β-1,3-d-glucan was detected by bathochromic shift from 488 to 516 nm (> 20 nm) in UV–Vis spectrophotometer. A micro- and high throughput method based on a 96-well microtiter plate was devised which presents several advantages over the published methods since it requires only 1.51 μg of polysaccharides in samples, greater sensitivity, speed, assay of many samples and very cheap. β-d-Glucans of several mushrooms (i.e., Coriolus versicolor, Ganoderma lucidum, Pleurotus ostreatus, Ganoderma carnosum, Hericium erinaceus, Lentinula edodes, Inonotus obliquus, Auricularia auricular, Polyporus umbellatus, Cordyseps sinensis, Agaricus blazei, Poria cocos) were isolated by using a sequence of several extractions with cold and boiling water, acidic and alkaline conditions and quantified by this microtiter plate method. FTIR spectroscopy was used to study the structural features of β-1,3-d-glucans in these mushroom samples as well as the specific interaction of these polysaccharides with Congo red. The effect of NaOH on triple helix conformation of β-1,3-d-glucans was investigated in several mushroom species.
Resumo:
Basidiomycete strains synthesize several types of beta-D-glucans, which play a major role in the medicinal properties of mushrooms. Therefore, the specific quantification of these beta-D-glucans in mushroom strains is of great biochemical importance. Because published assay methods for these beta-D-glucans present some disadvantages, a novel colorimetric assay method for beta-D-glucan with alcian blue dye was developed. The complex formation was detected by following the decrease in absorbance in the range of 620 nm and by hypsochromic shift from 620 to 606 nm (similar to 14 nm) in UV-Vis spectrophotometer. Analysis of variance was used for optimization of the slope of the calibration curve by using the assay mixture containing 0.017% (w/v) alcian blue in 2% (v/v) acetic acid at pH 3.0. The high-throughput colorimetric assay method on microtiter plates was used for quantification of beta-D-glucans in the range of 0-0.8 mu g, with a slope of 44.15 x 10(-2) and a limit of detection of 0.017 mu g/well. Recovery experiments were carried out by using a sample of Hericium erinaceus, which exhibited a recovery of 95.8% for beta-1,3-D-glucan. The present assay method exhibited a 10-fold higher sensitivity and a 59-fold lower limit of detection compared with the published method with congo red beta-D-glucans of several mushrooms strains were isolated from fruiting bodies and mycelia, and they were quantified by this assay method. This assay method is fast, specific, simple, and it can be used to quantify beta-D-glucans from other biological sources. (C) 2015 American Institute of Chemical Engineers
Resumo:
Alcohol dehydrogenases (ADHs) are oxidoreductases present in animal tissues, plants, and microorganisms. These enzymes attract major scientific interest for the evolutionary perspectives, afforded by their wide occurrence in nature, and for their use in synthesis, thanks to their broad substrate specificity and stereoselectivity. In the present study, the standardization of the activity of the alcohol dehydrogenase from baker's yeast was accomplished, and the pH and temperature stability showed, that the enzyme presented a high stability to pH 6.0-7.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The assays of ethanol (detection range 1-5 mM or 4.6 x 10(-2) to 23.0 x 10(-2) g/L) in different samples in alcoholic beverages, presented a maximum deviation of only 7.2%. The standard curve and the analytic curve of this method meet the conditions of precision, sensitivity, simplicity, and low cost, required for a useable analytical method. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The transcription factor nuclear factor κB (NFκB) is a key factor in the immune response triggered by a wide variety of molecules such as inflammatory cytokines, or some bacterial and viral products. This transcription factor represents a new target for the development of anti-inflammatory molecules, but this type of research is currently hampered by the lack of a convenient and rapid screening assay for NFκB activation. Indeed, NFκB DNA-binding capacity is traditionally estimated by radioactive gel shift assay. Here we propose a new DNA-binding assay based on the use of multi-well plates coated with a cold oligonucleotide containing the consensus binding site for NFκB. The presence of the DNA-bound transcription factor is then detected by anti-NFκB antibodies and revealed by colorimetry. This assay is easy to use, non-radioactive, highly reproducible, specific for NFκB, more sensitive than regular radioactive gel shift and very convenient for high throughput screening.
Resumo:
A colorimetric method has been developed and optimized to measure L-malic acid in samples of fruit juices and wine. This method is based on oxidation of the analyte, catalyzed by malate dehydrogenase (MDH) from dry baker's yeast, and in combination with the reduction of a tetrazolium salt (MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). In the present study, the method exhibited sensitivity in the range of 500-4000 mu M of L-malic acid in the reaction cuvette, with the lower detection limit of 6.7-10(-2) g/L, the upper limit of 53.6.10(-2) g/L and a maximum standard deviation of only 2.5 % for the analyzed samples. The MDH activity from baker's yeast was also optimized, the enzyme showed a high stability at pH=8.0-9.0 and the activity was maintained completely at temperatures up to 40 degrees C for 1 hour. The results show that the colorimetric method using enzymatic preparations from dry baker's yeast is a simple and low-cost method with possibility of wide application.
Resumo:
A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.
Resumo:
Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Caryocar brasiliense Camb (Pequi) is a typical Brazilian Cerrado fruit tree. Its fruit is used as a vitamin source for culinary purposes and as a source of oil for the manufacture of cosmetics. C. brasiliense supercritical CO2 extracts exhibit antimicrobial activity against the bacteria Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and also possess antioxidant activity. This study was designed to evaluate the in vitro cytotoxicity and phototoxicity of the supercritical CO2 extract obtained from the leaves of this species. In vitro cytotoxicity and phototoxicity of C. brasiliense supercritical CO2 extracts were assessed using a tetrazolium-based colorimetric assay (XTT) and Neutral Red methods. We found that the C. brasiliense (Pequi) extract obtained by supercritical CO2 extraction did not present cytotoxic and phototoxic hazards. This finding suggests that the extract may be useful for the development of cosmetic and/or pharmaceutical products.
Resumo:
In the scope of our ongoing research on bioactive agents from Brazilian flora, twenty-four extracts and fractions obtained from Piper arboreum Aub. and Piper tuberculatum Jacq. (Piperaceae) were screened for trypanocidal activity by using MTT colorimetric assay. The strongest activity was found in hexane fractions from the leaves of P. arboreum (IC50= 13.3 µg/ mL) and P. tuberculatum (IC50 = 17.2 µg/mL). Hexane fractions of the fruits of P. tuberculatum and P. arboreum showed potent toxic effects on epimastigote forms of Trypanosoma cruzi, with values of IC50 (µg/mL) of 32.2 and 31.3, respectively. Additionally, the phytochemical study of the hexane fraction of P. arboreum leaves furnished two pyrrolidine amides, piperyline (1) and 4,5-dihydropiperyline (2), which could be responsible, at least in part for the observed antiprotozoal activity.
Resumo:
Objectives: To evaluate biomarkers of endothelial dysfunction and oxidative stress in glucose intolerance (GI) compared to overt diabetes (DM2). Design and methods: 140 volunteers including 96 with DM2, 32 with GI and 12 controls (C) were Studied. NO metabolites, NO synthase inhibitors. thiols and N-acetyl-beta-glucosaminidase (NAGase) activity were analyzed by chemiluminescence, capillary electrophoresis, ELISA and colorimetric assay, respectively. Results: (center dot)NO metabolites were higher in GI (NOx: P=0.03 S-nitrosothiols: p=0.001) and DM2 (p=0.006; p=0.0006) groups in relation to group C, while nitrotyrosine was higher only in the DM2 group in comparison 10 the other groups. NAGase activity was elevated in GI (p=0.003) and DM2 (p=0.0004) groups in relation to group C, as well as, ADMA (p=0.01: p=0.003) and GSSG (p=0.01 p=0.002). Conclusions: (center dot)NO metabolites. (center dot)NO synthase inhibitors. thiols and NAGase are biomarkers Suitable to indicate endothelial dysfunction and oxidative stress in the early stages of impaired response to insulin. (c) 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
In South America, visceral leishmaniasis is a zoonosis caused by the protozoan species Leishmania infantum (syn. L. chagasi) and is primarily transmitted through the bite of the female Lutzomyia longipalpis. Its main reservoir in urban areas is the dog. The application of control measures recommended by health agencies have not achieved significant results in reducing the incidence of human cases, and the lack of effective drugs to treat dogs resulted in the prohibition of this course of action in Brazil. Therefore, it is necessary to search new alternatives for the treatment of canine and human visceral leishmaniasis. The objectives of this study were to evaluate the in vitro effect of fractions from Aloe vera (aloe), Coriandrum sativum (coriander), and Ricinus communis (castor) on promastigotes and amastigotes of L. infantum and to analyze the toxicity against the murine monocytic cells RAW 264.7. To determine the viability of these substances on 50% parasites (IC50), we used a tetrazolium dye (MU) colorimetric assay (bromide 3-4.5-dimethylthiazol-2-yl-2,5-dephenyltetrazolium), and on amastigotes we performed an in situ ELISA. All fractions were effective against L. infantum promastigotes and did not differ from the positive control pentamidine (p > 0.05). However, the R. communis ethyl acetate and chloroform fractions, as well as the C. sativum methanol fraction, were the most effective against amastigotes and did not differ from the positive control amphotericin B (p > 0.05). The R. communis ethyl acetate fraction was the least toxic, presenting 83.5% viability of RAW 264.7 cells, which was similar to the results obtained with amphotericin B (p > 0.05). Based on these results, we intend to undertake in vivo studies with R. communis ethyl acetate fractions due the high effectiveness against amastigotes and promastigotes of L. infantum and the low cytotoxicity towards murine monocytic cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The toxicities and uptake mechanisms of two hepatotoxins, namely cylindrospermopsin and lophyrotomin, were investigated on primary rat hepatocytes by using microcystin-LIZ (a well-known hepatotoxin produced by cyanobacteria) as a comparison. Isolated rat hepatocytes were incubated with different concentrations of hepatotoxins for 0, 24, 48 and 72 h. The cell viability was assayed by the tetrazolium-based (MTT) assay. Microcystin-LR, cylindrospermopsin and lophyrotomin all exhibited toxic effects on the primary rat hepatocytes with 72-h LC50 of 8, 40 and 560 ng/ml, respectively. The involvement of the bile acid transport system in the hepatotoxin-induced toxicities was tested in the presence of two bile acids, cholate and taurocholate. Results showed that the bile acid transport system was responsible for the uptake, and facilitated the subsequent toxicities of lophyrotomin on hepatocytes. This occurred to a much lesser extent with cylindrospermopsin. With its smaller molecular weight, passive diffusion might be one of the possible mechanisms for cylindrospermopsin uptake into hepatocytes. This was supported by incubating a permanent cell line, KB (devoid of bile acid transport system), with cylindrospermopsin which showed cytotoxic effects. No inhibition of protein phosphatase 2A by cylindrospermopsin or lophyrotomin was found. This indicated that other toxic mechanisms besides protein phosphatase inhibition were producing the toxicities of cylindrospermopsin and lophyrotomin, and that they were unlikely to be potential tumor promoters. (C) 2001 Elsevier Science Ltd. All rights reserved.