999 resultados para Color tissue Doppler
Resumo:
Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.
Resumo:
The subjective interpretation of dobutamine echocardiography (DBE) makes the accuracy of this technique dependent on the experience of the observer, and also poses problems of concordance between observers. Myocardial tissue Doppler velocity (MDV) may offer a quantitative technique for identification of coronary artery disease, but it is unclear whether this parameter could improve the results of less expert readers and in segments with low interobserver concordance. The aim of this study was to find whether MDV improved the accuracy of wall motion scoring in novice readers, experienced echocardiographers, and experts in stress echocardiography, and to identify the optimal means of integrating these tissue Doppler data in 77 patients who underwent DBE and angiography. New or worsening abnormalities were identified as ischemia and abnormalities seen at rest as scarring. Segmental MDV was measured independently and previously derived cutoffs were applied to categorize segments as normal or ab normal. Five strategies were used to combine MDV and wall motion score, and the results of each reader using each strategy were compared with quantitative coronary angiography. The accuracy of wall motion scoring by novice (68 +/- 3%) and experienced echocardiographers (71 +/- 3%) was less than experts in stress echocardiography (88 +/- 3%, p < 0.001). Various strategies for integration with MDV significantly improved the accuracy of wall motion scoring by novices from 75 +/- 2% to 77 +/- 5% (p < 0.01). Among the experienced group, accuracy improved from 74 +/- 2% to 77 +/- 5% (p < 0.05), but in the experts, no improvement was seen from their baseline accuracy. Integration with MDV also improved discordance related to the basal segments. Thus, use of MDV in all segments or MDV in all segments with wall motion scoring in the apex offers an improvement in sensitivity and accuracy with minimal compromise in specificity. (C) 2001 by Excerpta Medica, Inc.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.
Resumo:
To determine reference values for tissue Doppler imaging (TDI) and pulsed Doppler echocardiography for left ventricular diastolic function analysis in a healthy Brazilian adult population. Observations were based on a randomly selected healthy population from the city of Vitoria, Espirito Santo, Brazil. Healthy volunteers (n = 275, 61.7% women) without prior histories of cardiovascular disease underwent transthoracic echocardiography. We analyzed 175 individuals by TDI and evaluated mitral annulus E`- and A`-waves from the septum (S) and lateral wall (L) to calculate E`/A` ratios. Using pulsed Doppler echocardiography, we further analyzed the mitral E- and A-waves, E/A ratios, isovolumetric relaxation times (IRTs), and deceleration times (DTs) of 275 individuals. Pulsed Doppler mitral inflow mean values for men were as follows: E-wave: 71 +/- 16 cm/sec, A-wave: 68 +/- 15 cm/sec, IRT: 74.8 +/- 9.2 ms, DT: 206 +/- 32.3 ms, E/A ratio: 1.1 +/- 0.3. Pulsed Doppler mitral inflow mean values for women were as follows: E-wave: 76 +/- 17, A-wave: 69 +/- 14 cm/sec, IRT: 71.2 +/- 10.5 ms, DT: 197 +/- 33.3 ms, E/A ratio: 1.1 +/- 0.3. IRT and DT values were higher in men than in women (P = 0.04 and P = 0.007, respectively). TDI values in men were as follows: E`S: 11 +/- 3 cm/sec, A`S: 13 +/- 2 cm/sec, E`S/A`S: 0.89 +/- 0.2, E`L: 14 +/- 3 cm/sec, A`L: 14 +/- 2 cm/sec, E`L/A`L: 1.1 +/- 0.4. E-wave/ E`S ratio: 6.9 +/- 2.2; E-wave / E`L ratio: 4.9 +/- 1.7. In this study, we determined pulsed Doppler and TDI derived parameters for left ventricular diastolic function in a large sample of healthy Brazilian adults. (Echocardiography 2010;27:777-782).
Resumo:
Tissue Doppler imaging allows assessment of left ventricular dyssynchrony and resynchronization after biventricular pacing.
Resumo:
OBJECTIVE: To characterize left ventricular regional myocardial function through tissue Doppler echocardiography in healthy adults and to assess the influence of aging in this function. METHODS: In 45 healthy volunteers divided in two groups (< 45 and > 45 years old) we assessed longitudinal and radial regional function (velocities, times intervals and velocity-time integrals). Data were compared in each group and between groups. RESULTS: Systolic function: a) longitudinal: higher velocities and integrals in lateral and inferior walls and in basal segments, with a trend to reduction of these parameters with aging; b) radial: higher basal velocities, no significant change with aging. Diastolic function: a) longitudinal: higher velocities in lateral and inferior walls and in basal segments. With aging e and e/a velocities and integrals decreased, a increased and older individuals showed lower percentage of segments with e/a >1; b) radial: aging was associated with lower e and higher a velocities. CONCLUSION: 1) Tissue Doppler echocardiography detects physiological differences between regional myocardial function of different ventricular segments, in velocities, times intervals and integrals, with physiological heterogeneity and asynchrony; 2) Many of these data are age dependent; 3) Our data contribute to define normal values, and may become useful when compared with data from populations with heart diseases.
Resumo:
OBJECTIVES: The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND: CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS: In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS: Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS: Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
Introduzione: Negli ultimi anni, il color-power Doppler si è dimostrato un utile strumento per valutare le alterazioni della vascolarizzazione della parete intestinale nelle patologie del tratto gastro-enterico. Più di recente, i mezzi di contrasto ecografici di II generazione associati all’ecografia real-time con basso indice meccanico (CEUS) hanno permesso di valutare ecograficamente il microcircolo, consentendo la valutazione della vascolarizzazione di parete nelle patologie associate a flogosi e neoangiogenesi. Studi recenti hanno documentato i pattern Doppler e CEUS nella malattia infiammatoria intestinale. Le alterazioni della vascolarizzazione di parete nella patologia neoplastica, invece, sono state finora valutate con sola tecnica Doppler. Recenti studi basati sull’impiego di tale metodica hanno in effetti dimostrato che l’intensità del segnale vascolare di parete correla con la variante istologica della neoplasia e con il suo grado di invasione vascolare costituendo così un parametro di neoangiogenesi tumorale. Pertanto, ottenere mediante CEUS una più accurata definizione del microcircolo di parete potrebbe aiutare nella diagnosi differenziale tra patologia infiammatoria e neoplastica dello stomaco e fornire utili informazioni per valutare l’ aggressività del cancro gastrico.
Resumo:
Background: Cardiovascular disease (CVD) is a common cause of morbidity and mortality in childhood chronic kidney disease (CKD). Left ventricular hypertrophy (LVH) is known to be one of the earliest events in CVD development. Left ventricular diastolic function (DF) is thought to be also impaired in children with CKD. Tissue Doppler imaging (TDI) provide an accurate measure of DF and is less load dependent than conventional ECHO. Aim: To evaluate the LV mass and the DF in a population of children with CKD. Methods: 37 patients, median age: 10.4 (3.3-19.8); underlying renal disease: hypo/dysplasia (N=28), nephronophthisis (N=4), Alport (N=2), ARPKD (N=3), were analyzed. Thirty-eight percent of the patients were on stage 1-2 of CKD, 38% on stage 3, 16% on stage 4. Three patients were on dialysis. The most frequent factors related to CVD in CKD have been studied. LVH has been defined as a left ventricular mass index (LVMI) more than 35.7 g/h2,7. Results: Twenty-five patients (81%) had a LVH. LVMI and diastolic function index (E’/A’) were significantly related to the glomerular filtration rate (p<0.003 and p<0.004). Moreover the LVMI was correlated with the phosphorus and the hemoglobin level (p<0.0001 and p<0.004). LVH was present since the first stages of CKD (58% of patients were on stages 1-2). Early-diastolic myocardial velocity was reduced in 73% of our patients. We didn’t find any correlation between LVH and systemic hypertension. Conclusion: ECHO evaluation with TDI is suggested also in children prior to dialysis and with a normal blood pressure. If LVH is diagnosed, a periodic follow-up is necessary with the treatment of the modifiable risk factors (hypertension, disturbances of calcium, phosphorus and PTH, anemia ).
Resumo:
Systolic right ventricular (RV) function is an important predictor in the course of various congenital and acquired heart diseases. Its practical determination by echocardiography remains challenging. We compared routine assessment of lateral tricuspid annular systolic motion velocity (TV(lat), cm/s) using pulsed-wave tissue Doppler imaging from the apical 4-chamber view with cardiac magnetic resonance (CMR) as reference method.
Resumo:
Rhythm analysis of the fetal heart is hampered by the inability to routinely obtain electrocardiographic recordings of the fetus. Doppler studies of fetal cardiac tissue movements, assessing cardiac movements both qualitatively and quantitatively, have recently been described. We used a conventional high-resolution ultrasound system to obtain rhythm data from pulsed-wave tissue Doppler signals of the fetal heart in normal cardiac rhythm and in a variety of fetal cardiac arrhythmias.
Resumo:
OBJECTIVES The aim of this study was to compare the right (RV) and left (LV) ventricular Tei indices obtained by pulsed-wave Doppler (PD) and tissue Doppler (TD) methods in fetuses with structurally normal and abnormal hearts. METHODS This was a retrospective cross-sectional study of 147 fetuses that had a fetal echocardiogram and Tei index measured during a 2-year period. The RV and LV Tei indices were measured using both PD and TD methods. The difference between the two methods of Tei index measurement was tested using paired sample t-test, Pearson correlation coefficient was used to examine their relationship, and the agreement between the methods was tested using Bland-Altman analysis. RESULTS A total of 87 fetuses had normal hearts and 60 had a congenital heart defect. Both PD and TD Tei indices were measured successfully from at least one ventricle in 123 cases and from both ventricles in 110 cases. The mean TD Tei index was significantly higher than the mean PD Tei index for both ventricles (P < 0.0001). There was a weak but statistically significant correlation between the PD and TD Tei indices of the right ventricle (r = 0.20, P = 0.029), whereas the PD and TD Tei indices of the left ventricle did not correlate significantly (r = 0.04, P = 0.684). When pairs of Tei indices measured by two different methods (123 pairs for the right ventricle and 111 for the left ventricle) were tested with Bland-Altman analysis, the bias and precision were 0.147 and 0.254, respectively, for the right ventricle, and 0.299 and 0.276, respectively, for the left ventricle. CONCLUSIONS Correlation between Tei indices measured by PD and TD methods is weak and the agreement between individual measurements is poor. Therefore, they should not be used interchangeably in the assessment of fetal cardiac function.