1000 resultados para Collocation method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a collocation method for numerically solving Cauchy-type linear singular integro-differential equations. The numerical method is based on the transformation of the integro-differential equation into an integral equation, and then applying a collocation method to solve the latter. The collocation points are chosen as the Chebyshev nodes. Uniform convergence of the resulting method is then discussed. Numerical examples are presented and solved by the numerical techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Meshless methods are used for their capability of producing excellent solutions without requiring a mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements. However, node placement is still an open question, specially in strong form collocation meshless methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-conditioned matrices. In order to optimize node position and number, a direct multisearch technique for multiobjective optimization is used to optimize node distribution in the global collocation method using radial basis functions. The optimization method is applied to the bending of isotropic simply supported plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uncertainty information for global leaf area index (LAI) products is important for global modeling studies but usually difficult to systematically obtain at a global scale. Here, we present a new method that cross-validates existing global LAI products and produces consistent uncertainty information. The method is based on a triple collocation error model (TCEM) that assumes errors among LAI products are not correlated. Global monthly absolute and relative uncertainties, in 0.05° spatial resolutions, were generated for MODIS, CYCLOPES, and GLOBCARBON LAI products, with reasonable agreement in terms of spatial patterns and biome types. CYCLOPES shows the lowest absolute and relative uncertainties, followed by GLOBCARBON and MODIS. Grasses, crops, shrubs, and savannas usually have lower uncertainties than forests in association with the relatively larger forest LAI. With their densely vegetated canopies, tropical regions exhibit the highest absolute uncertainties but the lowest relative uncertainties, the latter of which tend to increase with higher latitudes. The estimated uncertainties of CYCLOPES generally meet the quality requirements (± 0.5) proposed by the Global Climate Observing System (GCOS), whereas for MODIS and GLOBCARBON only non-forest biome types have met the requirement. Nevertheless, none of the products seems to be within a relative uncertainty requirements of 20%. Further independent validation and comparative studies are expected to provide a fair assessment of uncertainties derived from TCEM. Overall, the proposed TCEM is straightforward and could be automated for the systematic processing of real time remote sensing observations to provide theoretical uncertainty information for a wider range of land products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The moving finite element collocation method proposed by Kill et al. (1995) Chem. Engng Sci. 51 (4), 2793-2799 for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures. Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). The method is simple yet sufficiently accurate for use in adsorption problems, where global collocation methods fail. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider boundary integral methods applied to boundary value problems for the positive definite Helmholtz-type problem -DeltaU + alpha U-2 = 0 in a bounded or unbounded domain, with the parameter alpha real and possibly large. Applications arise in the implementation of space-time boundary integral methods for the heat equation, where alpha is proportional to 1/root deltat, and deltat is the time step. The corresponding layer potentials arising from this problem depend nonlinearly on the parameter alpha and have kernels which become highly peaked as alpha --> infinity, causing standard discretization schemes to fail. We propose a new collocation method with a robust convergence rate as alpha --> infinity. Numerical experiments on a model problem verify the theoretical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper considers second kind integral equations of the form $\phi (x) = g(x) + \int_S {k(x,y)} \phi (y)ds(y)$ (abbreviated $\phi = g + K\phi $), in which S is an infinite cylindrical surface of arbitrary smooth cross section. The “truncated equation” (abbreviated $\phi _a = E_a g + K_a \phi _a $), obtained by replacing S by $S_a $, a closed bounded surface of class $C^2 $, the boundary of a section of the interior of S of length $2a$, is also discussed. Conditions on k are obtained (in particular, implying that K commutes with the operation of translation in the direction of the cylinder axis) which ensure that $I - K$ is invertible, that $I - K_a $ is invertible and $(I - K_a )^{ - 1} $ is uniformly bounded for all sufficiently large a, and that $\phi _a $ converges to $\phi $ in an appropriate sense as $a \to \infty $. Uniform stability and convergence results for a piecewise constant boundary element collocation method for the truncated equations are also obtained. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the integral equation and the corresponding boundary value problem) and convergence of a particular collocation method.