999 resultados para Collagenolytic activity


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micro were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBM0583-like) while cluster C2 harbored two genotypes (ATC03270-like and ICBM036). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the contribution of matrix degradation in the two-layer avian sclera to the development of myopia. Tissue inhibitor of metalloproteinase-2 (TIMP-2) was used to inhibit chick scleral collagen degradation with (3)H-proline, a marker for this effect. Ex vivo scleral culture experiments confirmed TIMP-2 doses for in vivo experimentation. Ocular growth and refractive response to exogenous TIMP-2 (11.25, 2.25, and 0.45 picomoles, plus vehicle only) were monitored in 7-day-old chicks during the induction of myopia over 4 days with a translucent occluder. Collagen degradation was assessed, in whole sclera and in separated scleral layers by using the same paradigm (11.25 picomoles TIMP-2; vehicle only).Approximately 60% of collagen degradation was inhibited with low (2 nM) doses of TIMP-2 in the ex vivo sclera. Degradative activity in the in vivo chick sclera increased significantly (46%) during myopia development, with all the altered activity confined to the fibrous layer. Addition of TIMP-2 significantly reduced (by 46%) this accelerated scleral collagen degradation, also by acting in the fibrous layer. TIMP-2 had no significant effect on (3)H-proline incorporated in the cartilaginous scleral layer and cornea. Despite inhibiting collagen degradation TIMP-2 had no significant effect on myopia development. Increased collagen degradation is a feature of scleral remodeling in chick myopia development, but is confined to the fibrous scleral layer. Significant inhibition of this collagenolytic activity with TIMP-2 has little effect on refractive error development, suggesting that collagen degradation in the sclera contributes little to the development of myopia in the chick.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

P. brasiliensis parasitizes various human tissues and proteinases exported by this fungus may allow it to metabolize and invade host tissues. The influence of the culture medium on the production of proteinases by P. brasiliensis isolates was studied and the export of these enzymes was followed as a function of culture time. The fungus was grown in neopeptone, BSA, elastin or collagen medium. The culture medium was assayed for azocollytic, elastinolytic and caseinolytic activity. Proteolytic activity was also analysed by electrophoresis of the culture medium on gelatin and casein substrate gels. P. brasiliensis expressed relatively high levels of azocoll, elastin and casein degrading activity in all types of medium, except in neopeptone medium. Generally, expression of azocollytic activity peaked during the third week of culture and caseinolytic activity during the fourth week of culture. Azocollytic activity was highest at pH 4.0 and caseinolytic activity at pH 8.0. Elastinolytic activity was also highest at pH 8.0. This activity, as well as the others, may provide the fungus with a source of carbon and nitrogen and may also be responsible for the invasion of host tissues, such as pulmonary elastic fiber, by P. brasiliensis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously isolated a series of MCF-7 human breast cancer cell variants which no longer require estrogen-supplementation for tumor growth in nude mice (Clarke et al. Proc Natl Acad Sci USA 86: 3649-3653, 1989). We now report that these hormone-independent and hormone-responsive variants (MIII, MCF7/LCC1) can invade locally from solid mammary fat pad tumors, and produce primary extensions on the surface of intraperitoneal structures including liver, pancreas, and diaphragm. Both lymphatic and hematogenous dissemination are observed, resulting in the establishing of pulmonary, bone, and renal metastases. The pattern of metastasis by MIII and MCF7/LCC1 cells closely resembles that frequently observed in breast cancer patients, and provides the first evidence of metastasis from MCF-7 cells growing in vivo without supplementary estrogen. The interexperimental incidence of metastases, and the time from cell inoculation to the appearance of metastatic disease are variable. The increased metastatic potential is not associated with an increase in either the level of laminin attachment, laminin receptor mRNA expression, or secreted type IV collagenolytic activity. We also did not detect a significant decrease in the steady-state mRNA levels of the metastasis inhibitor nm23 gene. However, when growing without estrogen in vitro, MCF7/LCC1 cells produce elevated levels of the estrogen-inducible cathepsin D enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported for human cathepsin K. The 1.4-A three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and K provided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the "gatekeeper" residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic periodontitis results from a complex aetiology, including the formation of a subgingival biofilm and the elicitation of the host s immune and inflammatory response. The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. Evidence supports that periodontitis progresses in dynamic states of exacerbation and remission or quiescence. The major clinical approach to identify disease progression is the tolerance method, based on sequential probing. Collagen degradation is one of the key events in periodontal destructive lesions. Matrix metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are associated with the severity of periodontal inflammation and disease, either by a direct breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. Despite the numerous host mediators that have been proposed as potential biomarkers for chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. The aim of the present study was to determine the key molecular MMP-8 and -13 interactions in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions and MMP-8 null allele mouse model. In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis patients, which were determined clinically by the tolerance method, and healthy GCF were analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic periodontitis was characterised by increased MMP-13 levels and the active sites showed a tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein concentration compared to inactive sites. In study (II), we investigated whether MMP-13 activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In study (III), we analysed the potential association between the levels, molecular forms, isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with progression episodes and treatment response. Because MMP-8 is activated by hypochlorous acid in vitro, our results suggested an interaction between the MPO oxidative pathway and MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and RANKL might promote the development and/or progression of periodontitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are evidences that Giardia trophozoites contain and/or release proteolytic enzymes that may be implicated in pathogenesis of giardiasis. This report describes a preliminary characterization of the proteolytic activity in excretory/secretory (E/S) products of Giardia duodenalis trophozoites of an axenic Brazilian strain (BTU-11) and the reference strain Portland 1 (P1). The protease activity of E/S products in conditioned medium by trophozoites of each strain was analyzed using substrate (gelatin and collagen) impregnated SDS-PAGE and hemoglobin assay. The protease characterization was based on inhibition assays including synthetic inhibitors. Proteolytic products were detected in the conditioned medium by trophozoites of both assayed strains. In the gels containing copolymerized gelatin and collagen, E/S products promoted degradation of the substrates and the most evident proteolysis zones were distributed in the migration regions of 77 to 18 kDa and 145 to 18 kDa, respectively, in the patterns of gelatinolytic and collagenolytic activities. Degradation of hemoglobin was also observed, and the pattern of hydrolysis was similar in both E/S products assayed. Inhibition assays showed that the main proteolytic activity in both E/S products is due to cysteine proteases although the presence of serine proteases was also indicated, mainly in the hydrolysis of hemoglobin.