926 resultados para Cold vapour
Resumo:
Mercury is not an essential element for plant or animal life and it is a potential environmental toxic because of its tendency to form covalent bonds with organic molecules and the high stability of the Hg-C bond. Reports estimate a total mercury concentration in natural waters ranging from 0.2 to 100 ng L-1. Due to this fact, highly sensitive methods are required for direct determination of such extremely low levels. In this work, a rapid and simple method was developed for separation and preconcentration of mercury by flow injection solid phase extraction coupled with on-line chemical vapour generation electrothermal atomic absorption spectrometry. The system is based on chelating retention of the analyte onto the mini column filled with a mesoporous silica functionalized with 1,5 bis (di-2-pyridyl) methylene thiocarbohydrazide. The main aim of this work was to develop a precise and accurate method for the determination of the Hg. Under the optima conditions and 120 s preconcentration time, the detection limit obtained was 0.009 μg L-1, with RSDs 3.7 % for 0.2 μg L-1, 4.8 % for 1 μg L-1 and enrichment factor 4, Furthermore, the method proposed has permitted the determination of Hg with a reduction in the analysis time, the sample throughput was about 18 h-1, low consumption of reagents and sample volume. The method was applied to the determination of Hg in sea water and river water. For the quality control of the analytical performance and the validation of the newly developed method, the analysis of two certified samples, TMDA 54.4 Fortified Lake, and LGC6187 River sediment was addressed. The results showed good agreement with the certified values.
Resumo:
Marine mammals accumulate heavy metals in their tissues at different concentrations according to trophic levels and environmental conditions. The franciscana (Pontoporia blainvillei) is a small coastal species inhabiting the marine and estuarine areas of the Southwestern Atlantic Ocean. Its diet includes numerous species of small fish, squid and crustaceans. The aims of this study were to (i) assess the heavy metal concentration and burden distribution in different franciscana age classes and sex, and to (ii) evaluate both the accumulation processes and the transplacental transference of zinc, cadmium, copper and total mercury. Heavy metal concentrations (wet weight) were determined in eighteen dolphins by Atomic Absorption Spectrophotometry (AAS), by the cold vapour technique (mercury) or with air/acetylene flame (cadmium, zinc and copper). Liver showed the highest concentrations of mercury (max. 8.8 mg/g), zinc (max. 29.7 mg/g) and copper (max. 19.0 mg/g), whereas the highest cadmium concentrations (max. 6.7 mg/g) were found in kidney. Adults contained the highest concentrations for all heavy metals, followed by juveniles and calves in decreasing order, suggesting an age-related accumulation. No differences (p<0.05) were found between sexes within each age class. Organ burden distribution followed the same pattern for all metals and age classes: liver tissues contained maximum burdens. Mercury concentrations were higher than those of cadmium in both foetuses and newborns; and neither metal could be detected in the foetus. The analysed data suggested differences in the placental transference between metals, being significant for mercury and almost null in the case of cadmium. We can conclude that franciscana accumulates heavy metals and, due to its coastal distribution, it may be considered as a biomonitor of its environment. SPANISH: Los mamíferos marinos acumulan metales pesados en sus tejidos cuyas concentraciones están en relación con su nivel trófico y las condiciones ambientales. La franciscana (Pontoporia blainvillei) es una especie costera que habita áreas marinas y estuariales en el Atlántico Sudoccidental. Su dieta está constituída por peces, como item alimentario principal, calamares y crustáceos. El objetivo del presente trabajo es estudiar la distribución de metales pesados en diferentes clases de edad y en ambos sexos, evaluando procesos de acumulación y cargas de cadmio, mercurio total, cinc y cobre. Las concentraciones de metales pesados (en peso húmedo) fueron determinadas en dieciocho delfines por Espectrofotometría de Absorción Atómica (EAA), usando la técnica de vapor frío (mercurio) o llama de aire/acetileno (cadmio, cinc y cobre). El hígado presentó las concentraciones más altas de mercurio (máx. 8,8 mg/g), cinc (máx. 29,7 mg/g) y cobre (máx. 19,0 mg/g), mientras que las más altas de cadmio (máx. 6,7 mg/g) fueron encontradas en el riñón. Los adultos presentaron los niveles más altos, presentando los juveniles y cachorros concentraciones menores, lo cual sugirió una acumulación con la edad. No se encontraron diferencias significativas (p < 0,05) entre sexos dentro de cada clase de edad. Las cargas de metales pesados en los órganos presentaron la misma disribución para todos los metales y clases de edad. Los valores más altos fueron encontrados en el hígado, incluyendo los correspondientes a cadmio. Las concentraciones de mercurio y cadmio fueron no detectables en el feto, mientras que las de mercurio fueron superiores a las de cadmio en los cachorros. Los datos encontrados en el feto sugieren una transferencia nula a través de la placenta. Podemos concluir que P.blainvillei acumula metales pesados en sus tejidos y debido a su distribución costera, esta especie puede ser considerada como un biomonitor de su ambiente.
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south–east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) “Total” digestion with HNO3, HClO4 and HF; (b) “Weak” digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically “urban” elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca–Mg and Al–Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant proportion of both elements may be susceptible to reincorporation in the aqueous phase under realistic environmental conditions.
Resumo:
In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID). It has been widely reported in the past few years how the FRFID can be used to study the exhaust and in-cylinder HC concentrations with a time resolution of a few degrees of crank angle, and the device has contributed significantly to the understanding of unburned HC emissions. Using the FRFID in the inlet manifold is difficult because of the presence of liquid droplets, and the low and fluctuating pressure levels, which leads to significant changes in the response time of the instrument. However, using recently developed procedures to correct for the errors caused by these effects, the concentration at the sampling point can be reconstructed to align the FRFID signal with actual events in the engine. © 1996 Society of Automotive Engineers, Inc.
Resumo:
The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations.
Resumo:
Silicon nanoparticles have been fabricated in both oxide and nitride matrices by using plasma-enhanced chemical vapour deposition, for which a low substrate temperature down to 50 degreesC turns out to be most favourable. High-rate deposition onto such a cold substrate results in the formation of nanoscaled silicon particles, which have revealed an amorphous nature under transmission electron microscope (TEM) examination. The particle size can be readily controlled below 3.0 nm, and the number density amounts to over 10(12) cm(-2), as calculated from the TEM micrographs. Strong photoluminescence in the whole visible light range has been observed in the as-deposited Si-in-SiOx and Si-in-SiNx thin films. Without altering the size or structure of the particles, a post-annealing at 300 degreesC for 2 min raised the photoluminescence efficiency to a level comparable to the achievements with nanocrystalline Si-in-SiO2 samples prepared at high temperature. This low-temperature procedure for fabricating light-emitting silicon structures opens up the possibility of manufacturing integrated silicon-based optoelectronics.
Resumo:
Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films – both undoped and doped with tungsten, niobium and gold nanoparticles – which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.
Resumo:
Cold pitched roofs, with their form of construction situating insulation on a horizontal ceiling, are intrinsically vulnerable to condensation. This study reports the results derived from using a simulation package (Heat, Air and Moisture modelling tool, or HAM-Tools) to investigate the risk of condensation in cold pitched roofs in housing fitted with a vapour-permeable underlay (VPU) of known characteristics. In order to visualize the effect of the VPUs on moisture transfer, several scenarios were modelled, and compared with the results from a conventional bituminous felt with high resistance (200 MNs/g, Sd = 40 m). The results indicate that ventilation is essential in the roof to reduce condensation. However, a sensitivity analysis proved that reducing the overall tightness of the ceiling and using lower-resistance VPUs would help in controlling condensation formation in the roof. To a large extent, the proposed characteristic performance of the VPU as predicted by manufacturers and some researchers may only be realistic if gaps in the ceiling are sealed completely during construction, which may be practically difficult given current construction practice.
Resumo:
The type and thickness of insulation on the topside horizontal of cold pitched roofs has a significant role in controlling air movement, energy conservation and moisture transfer reduction through the ceiling to the loft (roof void) space. To investigate its importance, a numerical model using a HAM software package on a Matlab platform with a Simulink simulation tool has been developed using insitu measurements of airflows from the dwelling space through the ceiling to the loft of three houses of different configurations and loft space. Considering typical UK roof underlay (i.e. bituminous felt and a vapour permeable underlay), insitu measurements of the 3 houses were tested using a calibrated passive sampling technique. Using the measured airflows, the effect of air movement on three types of roof insulation (i.e. fibreglass, cellulose and foam) was modelled to investigate associated energy losses and moisture transport. The thickness of the insulation materials were varied but the ceiling airtightness and eaves gap size were kept constant. These instances were considered in order to visualize the effects of the changing parameters. In addition, two different roof underlays of varying resistances were considered and compared to access the influence of the underlay, if any, on energy conservation. The comparison of these insulation materials in relation to the other parameters showed that the type of insulation material and thickness, contributes significantly to energy conservation and moisture transfer reduction through the roof and hence of the building as a whole.