960 resultados para Cohomology Farrell
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The book addresses a number of pressing social and environmental issues of global concern. It takes the reader on a socio-legal journal of climate change and explores a range of challenging and complex topics including renewable energies, emissions reduction, carbon trading, deforestation, migration and corporate governance.
Resumo:
Corepresentations of a coalgebra over a quadratic operad are defined, and various characterizations of them are given. Cohomology of such an operadic coalgebra with coefficients in a corepresentation is then studied.
Resumo:
Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.
Resumo:
In the paper we give an exposition of the major results concerning the relation between first order cohomology of Banach algebras of operators on a Banach space with coefficients in specified modules and the geometry of the underlying Banach space. In particular we shall compare the properties weak amenability and amenability for Banach algebras A(X), the approximable operators on a Banach space X. Whereas amenability is a local property of the Banach space X, weak amenability is often the consequence of properties of large scale geometry.
Resumo:
We investigate the simplicial cohomology of certain Banach operator algebras. The two main examples considered are the Banach algebra of all bounded operators on a Banach space and its ideal of approximable operators. Sufficient conditions will be given forcing Banach algebras of this kind to be simplicially trivial.
Resumo:
We consider non-standard totalisation functors for double complexes, involving left or right truncated products. We show how properties of these imply that the algebraic mapping torus of a self map h of a cochain complex of finitely presented modules has trivial negative Novikov cohomology, and has trivial positive Novikov cohomology provided h is a quasi-isomorphism. As an application we obtain a new and transparent proof that a finitely dominated cochain complex over a Laurent polynomial ring has trivial (positive and negative) Novikov cohomology.
Resumo:
In a previous Letter. The BRST cohomology in the pure spinor formalism of the superstring was shown to coincide with the light-cone Green-Schwarz spectrum by using an SO(8) parameterization of the pure spinor. In this Letter, the SO(9, 1) Lorentz generators are explicitly constructed using this SO(8) parameterization, proving the Lorentz invariance of the pure spinor BRST cohomology. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.