980 resultados para Cohomological invariant ends
Resumo:
We define a cohomological invariant E(G, S, M) where G is a group, S is a non empty family of (not necessarily distinct) subgroups of infinite index in G and M is a F2G-module (F2 is the field of two elements). In this paper we are interested in the special case where the family of subgroups consists of just one subgroup, and M is the F2G-module F2(G/S). The invariant E(G, {S}, F2(G/S)) will be denoted by E(G, S). We study the relations of this invariant with other ends e(G) , e(G, S) and e(G, S), and some results are obtained in the case where G and S have certain properties of duality.
Resumo:
Let G be a group, W a nonempty G-set and M a Z2G-module. Consider the restriction map resG W : H1(G,M) → Pi wi∈E H1(Gwi,M), [f] → (resGG wi [f])i∈I , where E = {wi, i ∈ I} is a set of orbit representatives in W and Gwi = {g ∈ G | gwi = wi} is the G-stabilizer subgroup (or isotropy subgroup) of wi, for each wi ∈ E. In this work we analyze some results presented in Andrade et al [5] about splittings and duality of groups, using the point of view of Dicks and Dunwoody [10] and the invariant E'(G,W) := 1+dimkerresG W, defined when Gwi is a subgroup of infinite index in G for all wi in E, andM = Z2 (where dim = dimZ2). We observe that the theory of splittings of groups (amalgamated free product and HNN-groups) is inserted in the combinatory theory of groups which has many applications in graph theory (see, for example, Serre [12] and Dicks and Dunwoody [10]).
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Let G be a group, let S be a subgroup with infinite index in G and let FSG be a certain Z2G-module. In this paper, using the cohomological invariant E(G, S, FSG) or simply E˜(G, S) (defined in [2]), we analyze some results about splittings of group G over a commensurable with S subgroup which are related with the algebraic obstruction “singG(S)" defined by Kropholler and Roller ([8]. We conclude that E˜(G, S) can substitute the obstruction “singG(S)" in more general way. We also analyze splittings of groups in the case, when G and S satisfy certain duality conditions.
Resumo:
Bieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality pairs (G, S) and provided a topological interpretation for such pairs through Eilenberg-MacLane pairs K(G, S, 1). A Poincaré duality pair is a pair (G, S) that satisfies two isomorphisms, one between absolute cohomology and relative homology and the second between relative cohomology and absolute homology. In this paper, we present a proof that those two isomorphisms are equivalent. We also present some calculations on duality pairs by using the cohomological invariant defined in [1] and studied in [2-4]. © 2012 Pushpa PublishingHouse.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Based on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.
Resumo:
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group. A significant new contribution here is the construction of the Poincare generators using quantum fields.
Resumo:
Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.
Resumo:
The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.
Resumo:
This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
MHC class II expression is regulated in dendritic cells independently of invariant chain degradation
Resumo:
We have investigated the mechanisms that control MHC class II (MHC II) expression in immature and activated dendritic cells (DC) grown from spleen and bone marrow precursors. Degradation of the MHC II chaperone invariant chain (li), acquisition of peptide cargo by MHC II, and delivery of MHC II-peptide complexes to the cell surface proceeded similarly in both immature and activated DC. However, immature DC reendocytosed and then degraded the MHC II-peptide complexes much faster than the activated DC. MHC II expression in DC is therefore not controlled by the activity of the protease(s) that degrade Ii, but by the rate of endocytosis of peptide-loaded MHC II. Late after activation, DC downregulated MHC II synthesis both in vitro and in vivo.
Resumo:
A partially occluded contour and a slanted contour may generate identical binocular horizontal disparities. We investigated conditions promoting an occlusion resolution indicated by an illusory contour in depth along the aligned ends of horizontally disparate line sets. For a set of identical oblique lines with a constant width added to one eye's view, strength, depth, and stability of the illusory contour were poor, whereas for oblique lines of alternating orientations the illusory contours were strong, indicating a reliance on vertical size disparities rather than vertical positional disparities in generating perceived occlusion. For horizontal lines, occlusion was seen when the lines were of different lengths and absolute width disparity was invariant across the set. In all line configurations, when the additional length was on the wrong eye to be attributed to differential occlusion, lines appeared slanted consistent with their individual horizontal disparities. This rules out monocular illusory contours as the determining factor.
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.