995 resultados para Cohesive Law
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
We develop a finite-element method for the simulation of dynamic fracture and fragmentation of thin-shells. The shell is spatially discretized with subdivision shell elements and the fracture along the element edges is modeled with a cohesive law. In order to follow the propagation and branching of cracks, subdivision shell elements are pre-fractured ab initio and the crack opening is constrained prior to crack nucleation. This approach allows for shell fracture in an in-plane tearing mode, a shearing mode, or a bending of hinge mode. The good performance of the method is demonstrated through the simulation of petalling failure experiments in aluminum plates. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A simple procedure to measure the cohesive laws of bonded joints under mode I loading using the double cantilever beam test is proposed. The method only requires recording the applied load–displacement data and measuring the crack opening displacement at its tip in the course of the experimental test. The strain energy release rate is obtained by a procedure involving the Timoshenko beam theory, the specimen’s compliance and the crack equivalent concept. Following the proposed approach the influence of the fracture process zone is taken into account which is fundamental for an accurate estimation of the failure process details. The cohesive law is obtained by differentiation of the strain energy release rate as a function of the crack opening displacement. The model was validated numerically considering three representative cohesive laws. Numerical simulations using finite element analysis including cohesive zone modeling were performed. The good agreement between the inputted and resulting laws for all the cases considered validates the model. An experimental confirmation was also performed by comparing the numerical and experimental load–displacement curves. The numerical load–displacement curves were obtained by adjusting typical cohesive laws to the ones measured experimentally following the proposed approach and using finite element analysis including cohesive zone modeling. Once again, good agreement was obtained in the comparisons thus demonstrating the good performance of the proposed methodology.
Resumo:
The durability of carbon fibre reinforced polymer (CFRP) strengthened steel circular hollow section (CHS) members has now become a real challenge to researchers. In addition, various parameters that may affect the durability of such members have not been revealed yet. This paper presents brief experimental results and the first finite element (FE) approach of CFRP strengthened steel CHS beams conditioned in simulated sea water, along with an accelerated corrosion environment at ambient (24 OC ± 4 OC) and 50 OC temperatures. The beams were loaded to failure under four-point bending. It was found that the strength and stiffness reduced significantly after conditioning in an accelerated corrosion environment. Numerical simulation is implemented using the ABAQUS static general approach. A cohesive element was utilised to model the interface element and an 8-node quadrilateral in-plane general-purpose continuum shell was used to model CFRP elements. A mixed mode cohesive law was deployed for all the three components of stresses in the proposed FE approach, which were one normal component and two shear components. The validity of the FE models was ascertained by comparing the ultimate load and load vs deflection response from experimental results. A range of parametric studies were conducted to investigate the effects of bond length, adhesive types, thickness and diameter of tubes. The results of parametric studies indicated that the adhesive with high tensile modulus performed better and durability design factors varied from section to section.
Resumo:
The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.
Resumo:
Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.
Resumo:
This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.
Resumo:
Qualquer estrutura hoje em dia deve ser resistente, robusta e leve, o que aumentou o interesse industrial e investigação nas ligações adesivas, nomeadamente pela melhoria das propriedades de resistência e fratura dos materiais. Com esta técnica de união, o projeto de estruturas pode ser orientado para estruturas mais leves, não só em relação à economia direta de peso relativamente às juntas aparafusas ou soldadas, mas também por causa da flexibilidade para ligar materiais diferentes. Em qualquer área da indústria, a aplicação em larga escala de uma determinada técnica de ligação supõe que estão disponíveis ferramentas confiáveis para o projeto e previsão da rotura. Neste âmbito, Modelos de Dano Coesivo (MDC) são uma ferramenta essencial, embora seja necessário estimar as leis MDC do adesivo à tração e corte para entrada nos modelos numéricos. Este trabalho avalia o valor da tenacidade ao corte (GIIC) de juntas coladas para três adesivos com ductilidade distinta. O trabalho experimental consiste na caracterização à fratura ao corte da ligação adesiva por métodos convencionais e pelo Integral-J. Além disso, pelo integral-J, é possível definir a forma exata da lei coesiva. Para o integral-J, é utilizado um método de correlação de imagem digital anteriormente desenvolvido para a avaliação do deslocamento ao corte do adesivo na extremidade da fenda (δs) durante o ensaio, acoplado a uma sub-rotina em Matlab® para a extração automática de δs. É também apresentado um trabalho numérico para avaliar a adequabilidade de leis coesivas triangulares aproximadas em reproduzir as curvas força-deslocamento (P-δ) experimentais dos ensaios ENF. Também se apresenta uma análise de sensibilidade para compreender a influência dos parâmetros coesivos nas previsões numéricas. Como resultado deste trabalho, foram estimadas experimentalmente as leis coesivas de cada adesivo pelo método direto, e numericamente validadas, para posterior previsão de resistência em juntas adesivas. Em conjunto com a caraterização à tração destes adesivos, é possível a previsão da rotura em modo-misto.
Resumo:
O uso de ligações adesivas aumentou significativamente nos últimos anos e é hoje em dia uma técnica de ligação dominante na indústria aeronáutica e automóvel. As ligações adesivas visam substituir os métodos tradicionais de fixação mecânicos na união de estruturas. A melhoria ao longo dos anos de vários modelos de previsão de dano, nomeadamente através do Método de Elementos Finitos (MEF), tem ajudado ao desenvolvimento desta técnica de ligação. Os Modelos de Dano coesivo (MDC), usados em conjunto com MEF, são uma ferramenta viável para a previsão de resistência de juntas adesivas. Os MDC combinam critérios da resistência dos materiais para a iniciação do dano e conceitos da mecânica da fratura para a propagação da fenda. Existem diversas formas de leis coesivas possíveis de aplicar em simulações por MDC, em função do comportamento expectável dos materiais que estão a ser simulados. Neste trabalho, estudou-se numericamente o efeito de diversas formas de leis coesivas na previsão no comportamento de juntas adesivas, nomeadamente nas curvas forçadeslocamento (P-) de ensaios Double-Cantilever Beam para caracterização à tração e ensaios End-Notched Flexure para caraterização ao corte. Também se estudou a influência dos parâmetros coesivos à tração e corte nas curvas P- dos referidos ensaios. Para o Araldite®AV138 à tração e ao corte, a lei triangular é a que melhor prevê o comportamento do adesivo. Para a previsão da resistência de ambos os adesivos Araldite® 2015 e SikaForce® 7752, a lei trapezoidal é a que melhor se adequa, confirmando assim que esta lei é a que melhor caracteriza o comportamento de dano de adesivos tipicamente dúcteis. O estudo dos parâmetros revelou influência distinta na previsão do comportamento das juntas, embora com bastantes semelhanças entre os diferentes tipos de adesivos.
Resumo:
A utilização de adesivos hoje em dia encontra-se de tal forma disseminada que é transversal a diversos setores do mercado, como a indústria aeroespacial, aeronáutica, automóvel e do desporto. De facto, o uso de ligações adesivas em estruturas mecânicas tem vindo a crescer, na medida em que estes têm substituído os métodos de ligação convencionais, tais como brasagem, rebitagem, ligações aparafusadas e soldadura. No geral, as ligações adesivas apresentam diversas vantagens, desde a diminuição do peso, redução da concentração de tensões, facilidade de fabrico, bom comportamento a solicitações cíclicas e capacidade de unir materiais dissimilares. O crescente interesse da indústria nas ligações adesivas tem por base o aumento da confiabilidade nos métodos de previsão de resistência de estruturas adesivas. Neste contexto surgem os Modelos de Dano Coesivo, que permitem simular o crescimento do dano em estruturas, após introdução das leis coesivas previamente estimadas nos modelos numéricos. Uma das fases mais importantes neste método de previsão é a estimativa das leis coesivas em tração e corte, pelo que se torna de grande relevância a existência e validação de métodos precisos para a obtenção destas leis. Este trabalho visa a validação de leis coesivas em tração e corte, estimadas pela aplicação do método direto, na previsão da resistência de juntas com geometria de solicitação mista. Neste âmbito, ensaiaram-se JSS e JSD com diferentes comprimentos de sobreposição e com adesivos de diferente ductilidade. Foram considerados os adesivos Araldite® AV138, de elevada resistência e baixa ductilidade, o Araldite® 2015, de moderada ductilidade e resistência intermédia, e o SikaForce® 7752, de baixa resistência e elevada ductilidade. As leis coesivas em modo puro serviram de base para a criação de leis simplificadas triangulares, trapezoidais e linearesexponenciais, que foram testadas para cada um dos adesivos. A validação das mesmas consumou-se por comparação das previsões numéricas com os resultados experimentais. Procedeu-se também a uma análise de tensões de arrancamento e de corte no adesivo, de modo a compreender a influência das tensões na resistência das juntas. A utilização do método direto permitiu obter previsões de resistência bastante precisas, indicando as formas de leis coesivas mais adequadas para cada conjunto adesivo/geometria de junta. Para além disso, para as condições geométricas e materiais consideradas, este estudo permitiu concluir que não se cometem erros significativos na escolha de uma lei menos adequada.
Resumo:
As ligações adesivas surgiram pela necessidade de se encontrar formas de unir componentes, por vezes de materiais distintos, através de técnicas mais vantajosas. Atualmente, qualquer estrutura deve ser resistente, robusta e leve, o que amplificou o interesse industrial e investigação nas ligações adesivas, principalmente na melhoria das propriedades de resistência e fratura de materiais. Desta forma, nos últimos anos, a utilização de juntas adesivas em aplicações industriais tem aumentando gradualmente, substituindo alguns métodos de ligação tradicionais, por apresentarem vantagens, tais como redução de concentração de tensões, reduzido peso e facilidade de processamento/fabrico. Em qualquer área da indústria, a aplicação em larga escala de uma determinada técnica de ligação supõe que estão disponíveis ferramentas confiáveis para o projeto e previsão da rotura. Neste âmbito, os Modelos de Dano Coesivo (MDC) são uma ferramenta fundamental, apesar de ser necessário estimar as leis coesivas do adesivo à tração e corte para entrada nos modelos numéricos. Nesta dissertação o trabalho experimental consistiu no tratamento de dados com vista à obtenção de GIc e GIIc, com a devida comparação de diferentes métodos de redução, bem como potencialidades e limitações dos mesmos. É realizada uma comparação dos três adesivos: Araldite® AV138, Araldite® 2015 e SikaForce® 7752. Neste trabalho estudou-se também numericamente a adequação de leis coesivas triangulares na previsão no comportamento de juntas adesivas, nomeadamente nas curvas forçadeslocamento (P-) de ensaios Double-Cantilever Beam para caracterização à tração e ensaios End-Notched Flexure para caraterização ao corte. Os ensaios foram simulados numericamente pelo software ABAQUS®, recorrendo ao Método de Elementos Finitos (MEF) e um MDC triangular, com o intuito de estimar a lei coesiva de cada um dos adesivos. Para os adesivos Araldite®AV138 e Araldite®2015, à tração e ao corte, a lei triangular previu o comportamento do adesivo com alguma razoabilidade. Para a previsão da resistência do adesivo SikaForce® 7752, a lei triangular não se ajustou convenientemente nem à tração nem ao corte. Considera-se que, para este adesivo, uma lei trapezoidal é a que melhor se adequa, devido à ductilidade do mesmo.
Resumo:
With a new finite strain anisotropic framework, we introduce a unified approach for constitutive model- ing and delamination of composites. We describe a finite-strain semi-implicit integration algorithm and the application to assumed-strain hexahedra. In a laminate composite, the laminae are modeled by an anisotropic Kirchhoff/Saint-Venant material and the interfaces are modeled by the exponential cohesive law with intrinsic characteristic length and the criterion by Benzeggagh and Kenane for the equivalent fracture toughness. For the element formulation, a weighted least-squares algorithm is used to calculate the mixed strain. Löwdin frames are used to model orthotropic materials without the added task of per- forming a polar decomposition or empirical frames. To assess the validity of our proposals and inspect step and mesh size dependence, a least-squares based hexahedral element is implemented and tested in depth in both deformation and delamination examples.
Resumo:
This chapter addresses the question, how can the common law concept of charity law be modernised? There are difficulties with the present jurisprudential conception. The focus of the chapter is not on those difficulties, however, but rather on the development of an alternative architecture for common law jurisprudence. The conclusion to which the chapter comes is that charity law can be modernised by a series of steps to include all civil society organisations. It is possible if the ‘technical’ definition of charitable purpose is abandoned in favour of a contemporary, not technical concept of charitiable purpose. This conclusion is reached by proposing a framework, developed from the common law concept of charities, that reconciles into a cohesive jurisprudential architecture all of the laws applying to civil society organisations, not just charities. In this section, first the argument is contextualised in an idea of society and located in a gap in legal theory. An analogy is then offered to introduce the problems in the legal theory applying, not just to charities, but more broadly to civil society organisations. The substantive challenge of mapping an alternative jurisprudence is then taken in steps. The final substantive section conceptualises the changes inherent in a move beyond charities to a jurisprudence centred on civil society organisations and how this would bring legal theory into line with sectoral analysis in other disciplines.
Resumo:
In the context of government funding and targets for increased participation in higher education and equity groups, as well as attrition rates, the literature on first year higher education highlights the importance of appropriate levels of support for students transitioning to higher education. In the law school context, support of first year students is also important in the response to the high levels of stress among law students. It is therefore necessary for universities to provide a variety of support to first year students from both a student perspective and a curriculum perspective. This paper explores the process of investigating the expansion of student support, including peer support programs, staff led programs, appointing a first year coordinator and developing a curriculum plan. These programs promote engagement and ensure a cohesive and integrated first year experience from both curriculum design and student experience perspectives. This paper will explain the process undertaken at QUT of expanding support for first year law students, overview the program details and will reflect on the feedback from students, peer facilitators and staff of expanding support for first year law students at QUT. The paper will conclude with recommendations for improvement to the program.
Resumo:
A micropolar cohesive damage model for delamination of composites is proposed. The main idea is to embed micropolarity, which brings an additional layer of kinematics through the micro-rotation degrees of freedom within a continuum model to account for the micro-structural effects during delamination. The resulting cohesive model, describing the modified traction separation law, includes micro-rotational jumps in addition to displacement jumps across the interface. The incorporation of micro-rotation requires the model to be supplemented with physically relevant material length scale parameters, whose effects during delamination of modes I and II are brought forth using numerical simulations appropriately supported by experimental evidences. (C) 2015 Elsevier Ltd. All rights reserved.