936 resultados para Cognitive neuroscience.
Resumo:
Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.
Resumo:
The use of non-invasive brain stimulation is widespread in studies of human cognitive neuroscience. This has led to some genuine advances in understanding perception and cognition, and has raised some hopes of applying the knowledge in clinical contexts. There are now several forms of stimulation, the ability to combine these with other methods, and ethical questions that are special to brain stimulation. In this Primer, we aim to give the users of these methods a starting point and perspective from which to view the key questions and usefulness of the different forms of non-invasive brain stimulation. We have done so by taking a critical view of recent highlights in the literature, selected case studies to illustrate the elements necessary and sufficient for good experiments, and pointed to questions and findings that can only be addressed using interference methods
Resumo:
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on dis- tributed networks. For example,more recent work has established the capacity of transcranialmagnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neu- rostimulationwith theoretical and biologicalmodels of cognition, for example,when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informedcomputational network analyses for predicting the impactofneurostimulationonbrainnetworks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools withwhich to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition
Resumo:
This article discusses the possible representational nature of two brain cognitive functions: perceptual and executive. Assuming the Newellian definition of representational processes as those that establish an isomorphic relation between two structures, I claim that perceptual processes generate only a partial correspondence (between stimuli properties and brain states) and therefore should not be properly conceived as representational. on the other hand, executive processes encompass the combination of copies (i.e., representations) of perceptual patterns, generating new patterns that subserve behavior. In summary, I criticize the notion of perceptual representations, and propose that brain representational processes are related to executive functions, having a pragmatic dimension.
Resumo:
Cognitive neuroscience boils down to describing the ways in which cognitive function results from brain activity. In turn, brain activity shows complex fluctuations, with structure at many spatio-temporal scales. Exactly how cognitive function inherits the physical dimensions of neural activity, though, is highly non-trivial, and so are generally the corresponding dimensions of cognitive phenomena. As for any physical phenomenon, when studying cognitive function, the first conceptual step should be that of establishing its dimensions. Here, we provide a systematic presentation of the temporal aspects of task-related brain activity, from the smallest scale of the brain imaging technique's resolution, to the observation time of a given experiment, through the characteristic time scales of the process under study. We first review some standard assumptions on the temporal scales of cognitive function. In spite of their general use, these assumptions hold true to a high degree of approximation for many cognitive (viz. fast perceptual) processes, but have their limitations for other ones (e.g., thinking or reasoning). We define in a rigorous way the temporal quantifiers of cognition at all scales, and illustrate how they qualitatively vary as a function of the properties of the cognitive process under study. We propose that each phenomenon should be approached with its own set of theoretical, methodological and analytical tools. In particular, we show that when treating cognitive processes such as thinking or reasoning, complex properties of ongoing brain activity, which can be drastically simplified when considering fast (e.g., perceptual) processes, start playing a major role, and not only characterize the temporal properties of task-related brain activity, but also determine the conditions for proper observation of the phenomena. Finally, some implications on the design of experiments, data analyses, and the choice of recording parameters are discussed.
Resumo:
Memory illusions and distortions have long been of interest to psychology researchers studying memory, but neuropsychologists and neuroscientists have paid relatively little attention to them. This article attempts to lay the foundation for a cognitive neuroscience analysis of memory illusions and distortions by reviewing relevant evidence from a patient with a right frontal lobe lesion, patients with amnesia produced by damage to the medial temporal lobes, normal aging, and healthy young volunteers studied with functional neuroimaging techniques. Particular attention is paid to the contrasting roles of prefrontal cortex and medial temporal lobe structures in accurate and illusory remembering. Converging evidence suggests that the study of illusory memories can provide a useful tool for delineating the brain processes and systems involved in constructive aspects of remembering.
Resumo:
Organizational cognitive neuroscience (OCN) is the cognitive neuroscientific study of organizational behavior. OCN lets us start to understand the relationship between our organizational behavior and our brains and allows us to dissect specific social processes at the neurobiological level and apply a wider range of analysis to specific organizational research questions. The current paper examines the utility of OCN to address specific organizational research questions. A brief history and definition of the approach is first provided. Next, a discussion of the rationale for OCN as a research framework is provided, and then, finally, an overview of the range of techniques that the organizational researcher should (or shouldnot) use is described.
Resumo:
The application of cognitive neuroscientific techniques to understanding social behaviour has resulted in many discoveries. Yet advocates of the ‘social cognitive neuroscience’ approach maintain that it suffers from a number of limitations. The most notable of these is its distance from any form of real-world applicabity. One solution to this limitation is ‘Organisational Cognitive Neuroscience’ – the study of the cognitive neuroscience of human behaviour in, and in response to, organizations. Given that all of us will spend most of our lives in some sort of work related organisation, organisational cognitive neuroscience allows us to examine the cognitive underpinnings of social behaviour that occurs in what may be our most natural ecology. Here we provide a brief overview of this approach, a definition and also some possible questions that the new approach would be best suited to address.
Resumo:
Social cognitive neuroscience is an emerging branch of cognitive neuroscience that bridges together social psychology and neuroscience. At its core is an understanding of the relationship between the brain and social interaction. The social cognitive neuroscientist places empirical endeavor within a three–stage framework, and questions falling under the SCN rubric undergo interrogation at each of these three levels. Firstly, we seek to understand a neuroscience of social interactions at the social level. Here we need to understand the motivational and other social factors that drive our behavior and experience in the real world. It goes without saying that any study of the cognitive neuroscience of socially interactive behavior must first be informed by social psychological theory to maintain ecological validity. Second, the social cognitive neuroscientist must be an adroit cognitive psychologist and be able to examine interactive behavior from the cognitive level. It is here that information–processing models and theories are applied to the understanding of our social behavior. Finally, studies at the neural level seek to inform us about the cortical structures, as well as the way they interact with other, in the mediation of the previous cognitive level. This volume brings together contributions from leading thinkers in both the social cognitive neurosciences and business to provide a comprehensive introduction and overview of a social cognitive neuroscience of the business brain. NOTE: Annals volumes are available for sale as individual books or as a journal. For information on institutional journal subscriptions, please visit www.blackwellpublishing.com/nyas. ACADEMY MEMBERS: Please contact the New York Academy of Sciences directly to place your order (www.nyas.org). Members of the New York Academy of Science receive full–text access to the Annals online and discounts on print volumes. Please visit http://www.nyas.org/MemberCenter/Join.aspx for more information about becoming a member
Resumo:
In this article, we identify research possibilities for organizational cognitive neuroscience that emerge from the papers in this special issue. We emphasize the intriguing finding that the papers share a common theme-the use of cognitive neuroscience to investigate the role of emotions in organizational behavior; this suggests a research agenda in its own right. We conclude the article by stressing that there is much yet to discover about how the mind works, especially in organizational settings.
Resumo:
Although organizational research has made tremendous strides in the last century, recent advances in neuroscience and the imaging of functional brain activity remain underused. In fact, even the use of well-established psychophysiological measurement tools is comparatively rare. Following the lead of social cognitive neuroscience, in this review, we conceptualize organizational cognitive neuroscience as a field dedicated to exploring the processes within the brain that underlie or influence human decisions, behaviors, and interactions either (a) within organizations or (b) in response to organizational manifestations or institutions. We discuss organizational cognitive neuroscience, bringing together work that may previously have been characterized rather atomistically, and provide a brief overview of individual methods that may be of use. Subsequently, we discuss the possible convergence and integration of the different neuroimaging and psychophysiological measurement modalities. A brief review of prior work in the field shows a significant need for a more coherent and theory-driven approach to organizational cognitive neuroscience. In response, we discuss a recent example of such work, along with three hypothetical case studies that exemplify the link between organizational and psychological theory and neuroscientific methods.