989 resultados para Coffee plantations
Resumo:
Transmission of Leishmania was studied in 27 coffee plantations in the Brazilian State of Minas Gerais. Eighteen females and six males (11.6% of the people tested), aged between 7-65 gave a positive response to the Montenegro skin test. Awareness of sand flies based on the ability of respondents to identify the insects using up to seven predetermined characteristics was significantly greater among inhabitants of houses occupied by at least one Mn+ve individual. Five species of phlebotomine sand fly, including three suspected Leishmania vectors, were collected within plantations under three different cultivation systems. Four of these species i.e., Lu. fischeri (Pinto 1926), Lu. migonei (França 1920), Lu. misionensis (Castro 1959) and Lutzomyia whitmani (Antunes & Coutinho 1939) were collected in an organic plantation and the last of these was also present in the other two plantation types. The remaining species, Lu. intermedia (Lutz & Neiva 1912), was collected in plantations under both the "adensado" and "convencional" systems. The results of this study indicate that transmission of Leishmania to man in coffee-growing areas of Minas Gerais may involve phlebotomine sand flies that inhabit plantations.
Resumo:
Farm planning requires an assessment of the soil class. Research suggest that the Diagnosis and Recommendation Integrated System (DRIS) has the capacity to evaluate the nutritional status of coffee plantations, regardless of environmental conditions. Additionally, the use of DRIS could reduce the costs for farm planning. This study evaluated the relationship between the soil class and nutritional status of coffee plants (Coffea canephora Pierre) using the Critical Level (CL) and DRIS methods, based on two multivariate statistical methods (discriminant and multidimensional scaling analyses). During three consecutive years, yield and foliar concentration of nutrients (N, P, K, Ca, Mg, S, B, Zn, Mn, Fe and Cu) were obtained from coffee plantations cultivated in Espírito Santo state. Discriminant analysis showed that the soil class was an important factor determining the nutritional status of the coffee plants. The grouping separation by the CL method was not as effective as the DRIS one. The bidimensional analysis of Euclidean distances did not show the same relationship between plant nutritional status and soil class. Multidimensional scaling analysis by the CL method indicated that 93.3 % of the crops grouped into one cluster, whereas the DRIS method split the fields more evenly into three clusters. The DRIS method thus proved to be more consistent than the CL method for grouping coffee plantations by soil class.
Resumo:
This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum) were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus at doses recommended for bean crop, these herbicides may be applied to control weeds in coffee and bean intercropping systems by spraying the entire area.
Resumo:
This study aimed to study the composition and dynamics of seed bank from soil of coffee plantations associated with grevilea trees in the experimental fields of the Southwest Bahia State University, on Vitória da Conquista campus. The experiments were carried out from September 2006 to May 2007. The coffee trees (Coffea arabica) were sown at three x one m spacing, associated with grevillea trees (Grevillea robusta) and maintained at densities of 277, 139, 123, 69, 62 and 31 plants ha-1, under direct sunlight. One hundred grams of soil were taken from each treatment with four repetitions and later identified and counted with a 10x magnifying glass. To determine seedling emergence, four soil samples of 1000 g were collected from each experimental field and transported to the greenhouse. Seedling emergence was observed by counts after 15, 30 and 45 days. The experimental design was randomized blocks of seven treatments (soil from different tree densities) and four replicates; the experimental unit consisted of a plastic tray (0, 30 x 0.22 x 0.06 m) containing 1.000 g of soil. The variables utilized to characterize the bank and its dynamics were: relative frequency, relative density, relative abundance, importance index and species diversity (Shannon-Weaver index).Increased number of monocotyledon seeds and sprouts were verified in the treatments maintained under full sunlight.
Resumo:
Mode of access: Internet.
Resumo:
In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.
Resumo:
Due to the great importance of coffee to the Brazilian economy, a good deal of the work carried out in the "Laboratório de Isótopos", E. E. A. "Luiz de Queiroz", Piracicaba, S. Paulo, Brazil, was dedicated to the study of some problems involving that plant. The first one was designed to verify a few aspects of the control of zinc deficiency which is common in many types of soils in Brazil. An experiment conducted in nutrient solution showed that the leaf absorption of the radiozinc was eight times as high as the root uptake; the lower surface of the leaves is particularly suited for this kind of absorption. Among the heavy metal micronutrients, only iron did not affect the absorption of the radiozinc; manganese, copper, and molybdenum brought about a decrease of fifty per cent in total uptake. In another pot experiment in which two soils typical of the coffee growing regions were used, namely, a sandy soil called "arenito de Bauru" and a heavy one, "terra roxa", only O.l and 0.2 per cent of the activity supplied to the roots was recovered", respectively. This indicates that under field conditions the farmer should not attempt to correct zinc deficiency by applying zinc salts to the soil: leaf sprays should be used wherever necessary. In order to find out the most suitable way to supply phosphatic fertilizers to the coffee plant, under normal farm conditions, an experiment with tagged superphosphate was carried out with the following methods of distribution of this material: (1) topdressed in a circular area around the trees; (2) placed in the bottom of a 15 cm deep furrow made around the plant; (3) placed in a semicircular furrow, as in the previous treatment; (4) sprayed directly to the leaves. It was verified that in the first case, circa 10 per cent of the phosphorus in the leaves came from the superphosphate; for the other treatments, the results ware, respectively: 2.4, 1.7, and 38.0 per cent. It is interesting to mention that the first and the last methods of distribution were those less used by the farmers; now they are being introduced in many coffee plantations. In a previous trial it was demonstrated that urea sprays were an adequate way to correct nitrogen deficiency under field conditions. An experiment was then set up in which urea-C14 was used to study the metabolism of this fertilizer in coffee leaves. In was verified that in a 9 hours period circa 95 per cent of the urea supplied to the leaves had been absorbed. The distribution of the nitrogen of the urea was followed by standard chemical procedures. On the other hand the fate of the carbonic moiety was studied with the aid of the radiochromatographic technique. Thus, the incorporation of C14 in aminoacids, sugars and organic acids was ascertained. Data obtained in this work gave a definite support to the idea that in coffee leaves, as in a few other higher plants, a mechanism similar to the urea cycle of animals does exist.
Resumo:
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age) and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years) and slope positions (3, 9 and 15 %). Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track) and at two depths (surface layer and sub-surface). Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.
Resumo:
ABSTRACT The number of days between anthesis and maturation of conilon coffee berries varies according to the genotype. Thus, it is believed that periods of greater nutrient demand for fruit formation also vary according to the genotype, directly influencing fertilizer management. The goal of this study was to establish accumulation curves for the micronutrients boron, copper, iron, manganese, and zinc in conilon coffee trees with different maturation cycles. The experiment was conducted in Nova Venécia, State of Espírito Santo, Brazil, during the reproductive cycle of the 2010/2011 crop year. Four coffee genotypes with different maturation cycles (early, intermediate, late, and super-late) were studied. A completely randomized experimental design was used with five replications. The treatments correspond to the accumulation of B, Cu, Fe, Mn, and Zn in the berries every 28 days in the period from flowering to harvest. The early, intermediate, and late genotypes accumulated Fe, Cu, and Mn in a similar manner, with sigmoid curves, whereas the super-late genotype accumulated these nutrients exponentially. Zn was accumulated by all four genotypes following a sigmoid curve. The early, intermediate, and late genotypes accumulated B linearly, whereas the super-late genotype accumulated B following a sigmoid curve. The maturation cycle of the genotype must be taken into account to apply the correct rate of micronutrient fertilization in coffee plantations.
Resumo:
In Brazil, although the coffee plantations are predominantly grown under full sunlight, the use of agroforestry systems can lead to socioeconomic advantages, thus providing a favorable environment to the crop by promoting its sustainability as well as environmental preservation. However, there is a lack of information on physiological quality of the coffee seeds produced under different levels of solar radiation. Within this context, the objective of this study was to evaluate the influence of different levels of solar radiation and maturation stages on the physiological quality of coffee (Coffea arabica L.) seeds, cv. Acaiá Cerrado MG-1474. Three levels of solar radiation (plants grown under full sunlight; under plastic screens of 35% shading; and under plastic screens of 50% shading) and three maturation stages (cherry, greenish-yellow and green) were assessed. Physiological quality of seeds was assessed by using germination test, first count of germination, abnormal seedlings, dead seeds, and seedlings with open cotyledonary leaves. Electrophoretic analysis of isoenzymes catalase, esterase, superoxide dismutase and peroxidase was also performed. With the evolution of development the coffee seeds presents increases on physiological quality, and at its beginning the seeds show improvements on quality with the reduction of solar radiation.
Resumo:
Little is known about the traditional coffee cultivation systems in Central Aceh, Indonesia, where coffee production is a major source of income for local Gayo people. Based on field observations and farmer interviews, 14 representative agroforestry coffee plantations of different age classes (60-70 years, 30-40 years, and 20 years) as well as seven adjacent grassland and native forest sites were selected for this study, and soil and coffee leaf samples collected for nutrient analysis. Significant differences in soil and coffee leaf parameters were found between former native forest and Sumatran pine (Pinus merkusii) forest as previous land cover indicating the importance of the land use history for today’s coffee cultivation. Soil pH as well as exchangeable Na and Ca concentrations were significantly lower on coffee plantations compared to grassland and forest sites. Soil C, N, plant available P, exchangeable K, and Mg concentrations showed no consistent differences between land use groups. Nitrogen (N), phosphorus (P), and potassium (K) concentrations of coffee leaves were in the sufficiency range, whereas zinc (Zn) contents were found to be consistently below the sufficiency threshold and significantly lower in coffee plantations of previous pine forest cover compared to those of previous native forest cover. While the results of this study provided insights into the nutrient status of coffee plantations in Central Aceh, the heterogeneity of site conditions, limited sampling size, and scarcity of reliable data about the land use history and initial soil conditions of sampled sites preclude more definitive conclusions about the sustainability of the studied systems.
Resumo:
Bees and other insects provide pollination services that are key to determining the fruit set on coffee plantations. These pollination services are influenced by local ecology as well as human factors, both social and economic. To better understand these different factors, we assessed their effect on pollinators and coffee pollination services in Santander, Colombia. We quantified the effect of key ecological drivers on pollinator community composition, such as the method of farm management (either conventional or organic) and the surrounding landscape composition, specifically the proximity to forest. We found that ambient levels of pollination services provided by the local pollinator fauna (open pollination) accounted for a 10.5 ± 2.0% increase in final coffee fruit set, and that the various pollinators are affected differently by the differing factors. For example, our findings indicate that conventional farm management, using synthetic inputs, can promote pollinators, especially if they are in close proximity to natural forest fragments. This is particularly true for stingless bees. Honeybee visitation to coffee is also positively influenced by the conventional management of farms. Factors associated with greater numbers of stingless bees on farms include greater shade cover, lower tree densities, smaller numbers and types of trees in bloom, and younger coffee plantations. A forested landscape close to farms appears to enhance these factors, giving increased stability and resilience to the pollinating bees and insects. However we found that organic farms also support diverse pollinator communities, even if distant from forest fragments. The contribution of honeybees to pollination value (US$129.6/ha of coffee) is greater than that of stingless bees (US$16.5/ha of coffee). Since the method of farm management has a major impact on the numbers and types of pollinators attracted to farms, we have analysed the statistically significant social factors that influence farmers’ decisions on whether to adopt organic or conventional practices. These include the availability of technology, the type of landowner (whether married couples or individual owners), the number of years of farmers’ formal education, the role of institutions, membership of community organizations, farm size, coffee productivity and the number of coffee plots per farm. It is hoped that the use of our holistic approach, which combines investigation of the social as well as the ecological drivers of pollination, will help provide evidence to underpin the development of best practices for integrating the management of pollination into sustainable agricultural practices.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)