935 resultados para Coefficient of restitution
Resumo:
Gas fluidised beds have many applications in a wide range of industrial sectors and it is important to be able to predict their performance. This requires, for example, a deeper appreciation of the flow of the particles in such systems using both empirical and numerical methods. The coefficient of restitution is an important collisional parameter that is used in some granular flow models in order to predict the velocities and positions of the particles in fluidised beds. The current paper reports experimental data involving the coefficients of restitution of three different representative types of granule viz. melt, wet and binderless granules. They were measured at various impact velocities and the values were compared with those calculated from different theoretical models based on quasi-static contact mechanics. This required knowledge of the Young's moduli and yield stresses, which were measured quasi-statically using diametric compression. The results show that the current theoretical models for the coefficient of restitution explored here lead to either an over- or an under-estimation of the measured values. The melt granules exhibited the greatest values of the coefficient of restitution, Young's modulus and yield stress. The differences in these values were consistent with the nature of the interparticle bonding for each of the three granule types. A new model for the calculation of the coefficient of restitution of granular material was developed that takes account of the work hardening of the granules during impact. Generally, this model provides an improved prediction of the measured values. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
The standard curve-fitting methods, Casagrande's log t method and Taylor's root t method, for the determination of the coefficient of consolidation use the later part of the consolidation curve and are influenced by secondary compression effects. Literature shows that secondary compression is concurrent with primary consolidation and that its effect is to decrease the value of the coefficient of consolidation. If the early part of the time-compression data is used, the values obtained will be less influenced by secondary compression effects. A method that uses the early part of the log t plot is proposed in this technical note. As the influence of secondary compression is reduced, the value obtained by this method is greater than that yielded by both the standard methods. The permeability values computed from C-v (obtained from the proposed method) rue more in agreement with the measured values than the standard methods showing that the effects of secondary compression are minimized. Time-compression data for a shorter duration is sufficient for the determination of C-v if the coefficient of secondary compression is not required.
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.
Resumo:
The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.
Resumo:
We study the dynamical properties of the homogeneous shear flow of inelastic dumbbells in two dimensions as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are modelled as smooth fused disks characterized by the ratio of the distance between centres (L) and the disk diameter (D), with an aspect ratio (L/D) varying between 0 and 1 in our simulations. Area fractions studied are in the range 0.1-0.7, while coefficients of normal restitution (e(n)) from 0.99 to 0.7 are considered. The simulations use a modified form of the event-driven methodology for circular disks. The average orientation is characterized by an order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axes of all dumbbells in the same direction). We investigate power-law fits of S as a function of (L D) and (1 - e(n)(2)) There is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased. The order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. The mean energy of the velocity fluctuations in the flow direction is higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocities are Gaussian to a very good approximation. The pressure is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation, even at the lowest area fractions studied here. The mean angular velocity of the particles is equal to half the vorticity at low area fractions, but the magnitude systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.
Resumo:
The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).
Resumo:
The paper is based on a study to develop carbon-glass epoxy hybrid composites with desirable thermal properties for applications at cryogenic temperatures. It analyzes the coefficient of thermal expansion of carbon-epoxy and glass-epoxy composite materials and compares it with the properties of carbon-glass epoxy hybrid composites in the temperature range 300 K to 125K. Urethane modified epoxy matrix system is used to make the composite specimens suitable for use even for temperatures as low as 20K. It is noted that the lay-up with 80% of carbon fibers in the total volume fraction of fibers oriented at 30 degrees and 20% of glass fibers oriented at 0 degrees yields near to zero coefficient of thermal expansion as the temperature is lowered from ambient to 125 K. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Parkin (1978) suggested the velocity method based on the observation that the theoretical rate of consolidation and time factor plot on a log-log scale yields an initial slope of 1:2 up to 50% consolidation. A new method is proposed that is an improvement over Parkin's velocity method because it minimizes the problems encountered in using that method. The results obtained agree with the other methods in use.