989 resultados para Code for Sustainable Homes
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
Environmental policy in the United Kingdom (UK) is witnessing a shift from command-and-control approaches towards more innovation-orientated environmental governance arrangements. These governance approaches are required which create institutions which support actors within a domain for learning not only about policy options, but also about their own interests and preferences. The need for construction actors to understand, engage and influence this process is critical to establishing policies which support innovation that satisfies each constituent’s needs. This capacity is particularly salient in an era where the expanding raft of environmental regulation is ushering in system-wide innovation in the construction sector. In this paper, the Code for Sustainable Homes (the Code) in the UK is used to demonstrate the emergence and operation of these new governance arrangements. The Code sets out a significant innovation challenge for the house-building sector with, for example, a requirement that all new houses must be zero-carbon by 2016. Drawing upon boundary organisation theory, the journey from the Code as a government aspiration, to the Code as a catalyst for the formation of the Zero Carbon Hub, a new institution, is traced and discussed. The case study reveals that the ZCH has demonstrated boundary organisation properties in its ability to be flexible to the needs and constraints of its constituent actors, yet robust enough to maintain and promote a common identity across regulation and industry boundaries.
Resumo:
The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their behaviour to reduce the environmental impacts of their consumption. These technologies tend to be single-resource focused (e.g. on electricity consumption only) and their functionality defined by persons other than end-users (e.g. electricity utilities). This paper presents initial findings of end-users' experiences with a multi-resource feedback technology, within the context of sustainable housing. It proposes that an understanding of user context, supply chain management and market diffusion issues are important design considerations that contribute to technology 'success'.
Resumo:
The UK government is committed to effectively implement a viable sustainable agenda in the social housing sector. To this end housing associations and local authorities are being encouraged to improve the environmental performance of their new and existing homes. Whilst much attention has been focused on new housing (e.g. the Code for Sustainable Homes) little effort has been focussed on improving the 3.9 (approx) million homes maintained and managed by the public sector (in England), which, given the low rate of new build and demolition (<1% in England), will represent approximately 70% of the public housing stock in 2050. Thus, if UK is to achieve sustainable public housing the major effort will have to focus on the existing stock. However, interpreting the sustainability agenda for an existing housing portfolio is not a straight foreword activity. In addition to finding a ‘technical’ solution, landlords also haveto address the socio-economic issues that balance quality of expectations of tenants with the economic realities of funding social housing refurbishment. This paper will report the findings of a qualitative study (participatory approach) that examined the processes by which a large public landlord sought to develop a long-term sustainable housing strategy. Through a series of individual meetings and group workshops the research team identified: committed leadership; attitudes towards technology; social awareness; and collective understanding of the sustainability agenda as key issues that the organisation needed to address in developing a robust and defendable refurbishment strategy. The paper concludes that the challenges faced by the landlord in improving the sustainability of their existing stock are not primarily technical, but socio-economic. Further, while the economic challenges: initial capital cost; lack of funding; and pay-back periods can be overcome, if the political will exists, by fiscal measures; the social challenges: health & wellbeing; poverty; security; space needs; behaviour change; education; and trust; are much more complex in nature and will require a coordinated approach from all the stakeholders involved in the wider community if they are to be effectively addressed. The key challenge to public housing landlords is to develop mechanisms that can identify and interpret the complex nature of the social sustainability agenda in a way that reflects local aspirations (although the authors believe the factors will exist in all social housing communities, their relative importance is likely to vary between communities) whilst addressing Government agendas.
Resumo:
In October 2008 UK government announced very ambitious commitment to reduce greenhouse gas emissions of at least 34% by 2020 and by 80% by 2050 against a 1990 baseline. Consequently the government declares that new homes should be built to high environmental standards which means that from 2016 new homes will have to be built to a Zero Carbon standard. The paper sets out to present UK zero carbon residential development achieving the highest, Level 6 of Code for Sustainable Homes standard. Comprehensive information is provided about various environmental aspects of the housing development. Special attention is given to energy efficiency features of the houses and low carbon district heating solution which include biomass boiler, heat pumps, solar collectors and photovoltaic panels. The paper presents also challenges which designers and builders had to face delivering houses of the future.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
2007 was a turning point on what sustainability meant for the construction industry with its new regulation and initiatives. The Government defined sustainability in terms of environmental objectives that can be measured, monitored and met. Last year was also the introduction of the Code for Sustainable Homes. This seminar explores the lessons learnt and the next stage of sustainability in terms of policy and practice.
Resumo:
There is a significant lack of indoor air quality research in low energy homes. This study compared the indoor air quality of eight
newly built case study homes constructed to similar levels of air-tightness and insulation; with two different ventilation strategies (four homes with Mechanical Ventilation with Heat Recovery (MVHR) systems/Code level 4 and four homes naturally ventilated/Code level 3). Indoor air quality measurements were conducted over a 24 h period in the living room and main bedroom of each home during the summer and winter seasons. Simultaneous outside measurements and an occupant diary were also employed during the measurement period. Occupant interviews were conducted to gain information on perceived indoor air quality, occupant behaviour and building related illnesses. Knowledge of the MVHR system including ventilation related behaviour was also studied. Results suggest indoor air quality problems in both the mechanically ventilated and naturally ventilated homes, with significant issues identified regarding occupant use in the social homes
Resumo:
This Information Paper is the third in a four-part series that looks at the lessons learnt from the BRE Innovation Park concerning compliance with the Code for Sustainable Homes published in November 2006. It focuses on water use, harvesting, recycling and drainage. The other parts deal with: building fabric; energy sources, overheating and ventilation; architecture, construction and sourcing.
Resumo:
Housing in the UK accounts for 30.5% of all energy consumed and is responsible for 25% of all carbon emissions. The UK Government’s Code for Sustainable Homes requires all new homes to be zero carbon by 2016. The development and widespread diffusion of low and zero carbon (LZC) technologies is recognised as being a key solution for housing developers to deliver against this zero-carbon agenda. The innovation challenge to design and incorporate these technologies into housing developers’ standard design and production templates will usher in significant technical and commercial risks. In this paper we report early results from an ongoing Engineering and Physical Sciences Research Council project looking at the innovation logic and trajectory of LZC technologies in new housing. The principal theoretical lens for the research is the socio-technical network approach which considers actors’ interests and interpretative flexibilities of technologies and how they negotiate and reproduce ‘acting spaces’ to shape, in this case, the selection and adoption of LZC technologies. The initial findings are revealing the form and operation of the technology networks around new housing developments as being very complex, involving a range of actors and viewpoints that vary for each housing development.
Resumo:
The Code for Sustainable Homes (the Code) will require new homes in the United Kingdom to be ‘zero carbon’ from 2016. Drawing upon an evolutionary innovation perspective, this paper contributes to a gap in the literature by investigating which low and zero carbon technologies are actually being used by house builders, rather than the prevailing emphasis on the potentiality of these technologies. Using the results from a questionnaire three empirical contributions are made. First, house builders are selecting a narrow range of technologies. Second, these choices are made to minimise the disruption to their standard design and production templates (SDPTs). Finally, the coalescence around a small group of technologies is expected to intensify with solar-based technologies predicted to become more important. This paper challenges the dominant technical rationality in the literature that technical efficiency and cost benefits are the primary drivers for technology selection. These drivers play an important role but one which is mediated by the logic of maintaining the SDPTs of the house builders. This emphasises the need for construction diffusion of innovation theory to be problematized and developed within the context of business and market regimes constrained and reproduced by resilient technological trajectories.
Resumo:
The design for the Gladstone Sustainable Home was an invited commission which contributed to the Queenland Governments Smart and Sustainable Homes Program, a legacy borne out of the 2004 Year of the Built Environment. The Sustainable Homes Program involved the partnering of the Queensland Government and Design/Building industry to promote and engage with sustainable housing. The Gladstone Sustainable Home incorporated 3 principles of sustainability - social, economic and environmental, and is listed within the Government Sustainable Homes website.
Resumo:
Purpose: The challenges of providing housing that sustains its inhabitants socially, economically and environmentally, and is inherently sustainable for the planet as a whole, requires a holistic systems approach that considers the product, the supply chain and the market, as well as the inter-dependencies within and between each of these process points. The purpose of the research is to identify factors that impact the sustainability performance outcomes of residential dwellings and the diffusion of sustainable housing into the mainstream housing market. Design/methodology/approach: This research represents a snapshot in time: a recording of the experiences of seven Australian families who are “early adopters” of leading edge sustainable homes within a specific sustainable urban development in subtropical Queensland. The research adopts a qualitative approach to compare the goals and expectations of these families with the actual sustainability aspects incorporated into their homes and lifestyles. Findings: The results show that the “product” – a sustainable house – is difficult to define; that sustainability outcomes were strongly influenced by individual concerns and the contextual urban environment; and that economic comparisons with “standard” housing are challenging. Research limitations/implications: This qualitative study is based on seven families (13 individuals) in an Ecovillage in southeast Queensland. Although the findings make a significant contribution to knowledge, they may not be generalisable to the wider population. Originality/value: The experiences of these early adopter families suggest that the housing market and regulators play critical roles, through actions and language, in limiting or enhancing the diffusion of sustainable housing into the market.