908 resultados para Cod Gadus-morhua


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The volume of the primary (PCS) and secondary (SCS) circulatory system in the Atlantic cod Gadus morhua was determined using a modified dye dilution technique. Cod (N=10) were chronically cannulated in the second afferent branchial artery with PE-50 tubing. Evans Blue dye was bound to harvested fish plasma at a concentration of 1 mg dye ml(-1) plasma, and injected at a concentration of 1 mg kg(-1) body mass. Serial sampling from the cannula produced a dye dilution curve, which could be described by a double exponential decay equation. Curve analysis enabled the calculation of the primary circulatory and total distribution volume. The difference between these volumes is assumed to be the volume of the SCS. From the dilution curve, it was also possible to calculate flow rates between and within the systems. The results of these experiments suggest a plasma volume in the PCS of 3.42+/-0.89 ml 100 g(-1) body mass, and in the SCS of 1.68+/-0.35 ml 100 g(-1) body mass (mean +/- S.D.) or approximately 50% that of the PCS. Flow rates to the SCS were calculated as 2.7% of the resting cardiac output. There was an allometric relationship between body mass and blood volumes. Increasing condition factor showed a tendency towards smaller blood volumes of the PCS, expressed as percentage body mass, but this was not evident for the volume of the SCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of fish roe leads to changes in its chemical composition, the extent of which depends on the techniques and additives employed. This study aimed to investigate the effects of ripening temperature and the use of sodium benzoate and citric acid on the quality of ripened cod roe, with respect to the contents of volatile base nitrogen (VBN), trimethylamine (TMA), biogenic amines (BA) and on the lipid composition. In comparison with fresh roes, ripened roes presented higher contents of VBN, TMA, BA and the proportion of free fatty acids regardless of the temperature and additives used during the ripening process. The greatest increases were observed in the samples ripened at 17 degrees C without additives, in which histamine was detected at 8.8 mg/100 g. A low ripening temperature was the main factor responsible for minimising changes in the cod roe composition. The addition of sodium benzoate as a preservative or citric acid to decrease the pH value had a significant effect in maintaining the quality of the cod roes, mainly at high ripening temperature. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resting and maximum in situ cardiac performance of Newfoundland Atlantic cod (Gadus morhua) acclimated to 10, 4 and 0°C were measured at their respective acclimation temperatures, and when acutely exposed to temperature changes: i.e. hearts from 10°C fish cooled to 4°C, and hearts from 4°C fish measured at 10 and 0°C. Intrinsic heart rate (f(H)) decreased from 41 beats min(-1) at 10°C to 33 beats min(-1) at 4°C and 25 beats min(-1) at 0°C. However, this degree of thermal dependency was not reflected in maximal cardiac output (Q(max) values were ~44, ~37 and ~34 ml min(-1) kg(-1) at 10, 4 and 0°C, respectively). Further, cardiac scope showed a slight positive compensation between 4 and 0°C (Q(10)=1.7), and full, if not a slight over compensation between 10 and 4°C (Q(10)=0.9). The maximal performance of hearts exposed to an acute decrease in temperature (i.e. from 10 to 4°C and 4 to 0°C) was comparable to that measured for hearts from 4°C- and 0°C-acclimated fish, respectively. In contrast, 4°C-acclimated hearts significantly out-performed 10°C-acclimated hearts when tested at a common temperature of 10°C (in terms of both Q(max) and power output). Only minimal differences in cardiac function were seen between hearts stimulated with basal (5 nmol l(-1)) versus maximal (200 nmol l(-1)) levels of adrenaline, the effects of which were not temperature dependent. These results: (1) show that maximum performance of the isolated cod heart is not compromised by exposure to cold temperatures; and (2) support data from other studies, which show that, in contrast to salmonids, cod cardiac performance/myocardial contractility is not dependent upon humoral adrenergic stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal acclimation is frequently cited as a means by which ectothermic animals improve their Darwinian fitness, i.e. the beneficial acclimation hypothesis. As the critical swimming speed (U (crit)) test is often used as a proxy measure of fitness, we acclimated Atlantic cod (Gadus morhua) to 4 and 10 degrees C and then assessed their U (crit) swimming performance at their respective acclimation temperatures and during acute temperature reversal. Because phenotypic differences exist between different populations of cod, we undertook these experiments in two different populations, North Sea cod and North East Arctic cod. Acclimation to 4 or 10 degrees C had a minimal effect on swimming performance or U (crit), however test temperature did, with all groups having a 10-17% higher U (crit) at 10 degrees C. The swimming efficiency was significantly lower in all groups at 4 degrees C arguably due to the compression of the muscle fibre recruitment order. This also led to a reduction in the duration of "kick and glide" swimming at 4 degrees C. No significant differences were seen between the two populations in any of the measured parameters, due possibly to the extended acclimation period. Our data indicate that acclimation imparts little benefit on U (crit) swimming test in Atlantic cod. Further efforts need to identify the functional consequences of the long-term thermal acclimation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much previous research has demonstrated the plasticity of myoglobin concentrations in both cardiac and skeletal myocytes in response to hypoxia and training. No study has yet looked at the effect of thermal acclimation on myoglobin in fish. Atlantic cod (Gadus morhua) from two different populations, i.e. the North Sea and the North East Arctic, were acclimated to 10 and 4 degrees C. Both the myoglobin mRNA and myoglobin protein in cod hearts increased significantly by up to 3.7 and 2.3 fold respectively as a result of acclimation to 4 degrees C. These increments were largest in the Arctic population, which in earlier studies have been shown to possess cold compensated metabolic demands at low temperatures. These metabolic demands associated with higher mitochondrial capacities may have driven the increase in cardiac myoglobin concentrations, in order to support diffusive oxygen supply. At the same time the increase in myoglobin levels may serve further functions during cold acclimation, for example, protection of the cell against reactive oxygen species, and scavenging nitric oxide, thereby contributing to the regulation of mitochondrial volume density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration ratios of strontium to calcium in laboratory-reared larval cod otoliths are shown to be related to the water temperature (T) at the time of otolith precipitation. This relationship is curvilinear, and is best described by a simple exponential equation of the form (Sr/Ca x 1000 = a exp(-T/b). We show that when Sr/Ca elemental analyses are related to the daily growth increments in the larval otoliths, relative temperature histories of individual field-caught larvae can be reconstructed from the egg stage to the time of capture. We present preliminary examples of how such reconstructed temperature histories of Atlantic cod Gadus morhua larvae, collected on Georges Bank during April and May 1993, may be interpreted in relation to the broad-scale larval distributions and the hydrography of the Bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate presence and potential accumulation of cyclic volatile methyl siloxanes (cVMS) in the Arctic environment. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcy-clohexasiloxane (D6) were analyzed in sediment, Zooplankton, Atlantic cod (Gadus morhua), shorthorn sculpin (Myxocephalus scorpius), and bearded seal (Erignathus barbatus) collected from the Svalbard archipelago within the European Arctic in July 2009. Highest levels were found for D5 in fish collected from Adventfjorden, with average concentrations of 176 and 531 ng/g lipid in Atlantic cod and shorthorn sculpin, respectively. Decreasing concentration of D5 in sediment collected away from waste water outlet in Adventfjorden indicates that the local settlement of Longyearbyen is a point source to the local aquatic environment. Median biota sediment accumulation factors (BSAFs) calculated for D5 in Adventfjorden were 2.1 and 1.5 for Atlantic cod and shorthorn sculpin, respectively. Biota concentrations of D5 were lower or below detection limits in remote and sparsely populated regions (Kongsfjorden and Liefdefjorden) compared to Adventfjorden. The levels of cVMS were found to be low or below detection limits in bearded seal blubber and indicate a low risk for cVMS accumulation within mammals. Accumulation of cVMS in fish appears to be influenced by local exposure from human settlements within the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.