992 resultados para Coconut water
Resumo:
The inactivation kinetics of enzymes polyphenol oxidase (PPO) and peroxidase (POD) was studied for the batch (discontinuous) microwave treatment of green coconut water. Inactivation of commercial PPO and POD added to sterile coconut water was also investigated. The complete time-temperature profiles of the experimental runs were used for determination of the kinetic parameters D-value and z-value: PPO (D(92.20 degrees C) = 52 s and z = 17.6 degrees C); POD (D(92.92 degrees C) = 16 s and z = 11.5 degrees C); PPO/sterile coconut water: (D(84.45 degrees C) = 43 s and z = 39.5 degrees C) and POD/sterile coconut water: (D(86.54 degrees C) = 20 s and z = 19.3 degrees C). All data were well fitted by a first order kinetic model. The enzymes naturally present in coconut water showed a higher resistance when compared to those added to the sterilized medium or other simulated solutions reported in the literature. The thermal inactivation of PPO and POD during microwave processing of green coconut water was significantly faster in comparison with conventional processes reported in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
P>AimTo evaluate the effectiveness of a new storage medium for avulsed teeth, coconut water, in maintaining the viability of human fibroblasts.MethodologyCell viability after different time periods was evaluated in the following storage media: coconut water, coconut water with sodium bicarbonate, milk, saline and still mineral water. Human fibroblasts were seeded in Eagle's minimal essential medium (EMEM) supplemented with 7.5% foetal calf serum. After trypsinisation, 100 mu L of culture medium containing approximately 10(4) cells mL(-1) were collected and pipetted into the wells of 96-well plates, which were incubated overnight in 5% CO(2) and 95% air mixture at 37 degrees C. EMEM was then replaced by the storage media and the plates were incubated at 37 degrees C for 1, 2 and 4 h. Cell viability was determined using the neutral red assay. The proportions of viable cells after exposure to the storage media were analysed statistically by anova and the least significant difference (LSD) test (alpha = 5%).ResultsMilk had the greatest capacity to maintain cell viability (P < 0.05), followed by coconut water with sodium bicarbonate and saline. Coconut water was significantly worse at maintaining cell viability compared to milk, coconut water with sodium bicarbonate and saline. The smallest number of viable cells was observed for mineral water (P < 0.05).ConclusionCoconut water was worse than milk in maintaining human fibroblast cell viability.
Resumo:
A simple method was developed to determine carbofuran and 3-hydroxycarbofuran in coconut water. The procedure involved solid-phase extraction using C-18 cartridges with acetonitrile for elution. The analysis of these compounds was carried out by liquid chromatography with UV detection at 275 nm using a gradient solvent system. The method was validated with fortified samples at different concentration levels (0.01-2.5 mu g/mL). Average recoveries ranged from 81 to 95% with relative standard deviation between 1.6 and 12.5%. Each recovery analysis was repeated at least five times. Detection limits ranged from 0.008 to 0.01 mu g/mL. The analytical procedure was applied to coconut water samples from palms submitted to treatment with commercial formulation under field conditions.
Resumo:
Two simple methods were developed to determine, 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C-18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 2646642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of = 350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Resumo:
To determine the ameliorative effect of coconut water on haematobiochemical changes due to lead poisoning in wistar albino rats for six weeks, sixty rats were assigned to four groups. 0.10g/l of lead and 75ml coconut ( cocus nucifera l.) water were given orally for six weeks. The mean values of red blood cells, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell distribution width and platelets (8.10±0.63(×106μl), 52.7±0.87(μm3), 17.9±0.56(pg), 34.73±0.65(g/dl), 17.90±0.67(%) and 670.00±42.22(×103μl) respectively) reduced in lead treated rats when compared with control mean values (8.41 ± 0.90(×106μl), 56.60 ± 1.55(μm3), 19.33 ± 0.82(pg), 34.93 ± 0.90(g/dl), 18.27 ± 0.73(%) and 818.33± 123.68(×103μl) respectively ) and these values increased in75ml coconut water only group and the group of 0.10g/l lead + 75ml coconut water except mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, and red blood cell distribution width of the 75ml coconut water only. The mean values of white blood cells, lymphocytes, total cholesterol, triglyceride, high density lipoprotein-cholesterol, low density lipoprotein-cholesterol, low density lipoprotein-cholesterol/high density lipoproteincholesterol and total cholesterol/high density lipoprotein-cholesterol increased (12.23±0.57(×103μl), 79.83±3.87(%), 64.66±6.01(mg/dl), 89.00±7.94(mg/dl), 22.67±6.93(mg/dl), 21.00±4.58(mg/dl), 1.29±0.62 and 3.36±0.83 respectively ) in the lead group when compared with mean values of control group (5.83±0.74(×103μl), 69.07±10.57(%), 54.00±4.04(mg/dl), 97.33±11.34(mg/dl), 20.00±3.06(mg/dl), 17.00±6.51(mg/dl), 0.97±0.41 and 2.87±0.55 respectively) but the mean values decreased when compared with the mean values of group of 75ml coconut water only and group of 0.10g/l lead + 75ml coconut water, except the mean values of high density lipoprotein-cholesterol. These results indicate that coconut water could ameliorate effects of lead toxicity
Resumo:
Coconut water is a natural isotonic, nutritive, and low-caloric drink. Preservation process is necessary to increase its shelf life outside the fruit and to improve commercialization. However, the influence of the conservation processes, antioxidant addition, maturation time, and soil where coconut is cultivated on the chemical composition of coconut water has had few arguments and studies. For these reasons, an evaluation of coconut waters (unprocessed and processed) was carried out using Ca, Cu, Fe, K, Mg, Mn, Na, Zn, chloride, sulfate, phosphate, malate, and ascorbate concentrations and chemometric tools. The quantitative determinations were performed by electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and capillary electrophoresis. The results showed that Ca, K, and Zn concentrations did not present significant alterations between the samples. The ranges of Cu, Fe, Mg, Mn, PO (4) (3-) , and SO (4) (2-) concentrations were as follows: Cu (3.1-120 A mu g L(-1)), Fe (60-330 A mu g L(-1)), Mg (48-123 mg L(-1)), Mn (0.4-4.0 mg L(-1)), PO (4) (3-) (55-212 mg L(-1)), and SO (4) (2-) (19-136 mg L(-1)). The principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to differentiate unprocessed and processed samples. Multivariated analysis (PCA and HCA) were compared through one-way analysis of variance with Tukey-Kramer multiple comparisons test, and p values less than 0.05 were considered to be significant.
Resumo:
O Brasil é considerado um dos maiores produtores e consumidores de frutas tropicais. O coco verde (Cocos nucifera L.) se destaca tanto em termos de produção e consumo quanto em quantidade de resíduos gerada por indústrias de água de coco e pelo consumo in natura. Portanto, existe uma necessidade de aproveitamento deste subproduto. Este trabalho teve por objetivo estudar as isotermas de adsorção da polpa de coco verde e determinação do calor isostérico de sorção. As isotermas de adsorção para as temperaturas de 30, 40, 50, 60 e 70 °C foram analisadas e evidenciaram curvas do tipo III, típicas de alimentos ricos em açúcares. Os dados experimentais de umidade de equilíbrio foram correlacionados por modelos da literatura. O modelo de GAB apresentou melhor concordância com os dados experimentais, entre os modelos avaliados. O calor isostérico de sorção é considerado um indicativo de forças atrativas intermoleculares entre os sítios de sorção de vapor de água, consequentemente, um importante fator para predizer a vida de prateleira de produtos desidratados.
Resumo:
Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L.) stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB) model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.
Resumo:
In order to develop an efficient and reliable biolistics transformation system for pineapples parameters need to be optimised for growth, survival and development of explants pre- and post transformation. We have optimised in vitro conditions for culture media for the various stages of plant and callus initiation and development, and for effective selection of putative transgenic material. Shoot multiplication and proliferation is best on medium containing MS basic nutrients and vitamins with the addition of 0.1 mg/L myo-inositol, 20 g/L sucrose, 2.5 mg/L BAP and 3 g/L Phytagel, followed by transfer to basic MS medium for further development. Callus production on leaf base explants is best on MS nutrients and vitamins, to which 10 mg/L of BAP and NAA each was added. Optimum explant age for bombardment is 17-35 week old callus, while a pre-bombardment osmoticum treatment in the medium is not required. By comparing several antibiotics as selective agent, it has been established that a two-step selection of 2 fortnightly sub-cultures on 50 μg/mL of geneticin in the culture medium, followed by monthly sub-cultures on 100 μg/mL geneticin is optimal for survival of transgenic callus. Shoot regeneration from callus cultures is optimal on medium containing MS nutrients and vitamins, 5% coconut water and 400 mg/L casein hydrolysate. Plants can be readily regenerated and multiplied from transgenic callus through organogenesis. Rooting of shoots does not require any additional plant hormones to the medium. A transformation efficiency of 1 – 3.5% can be achieved, depending on the gene construct applied.
Resumo:
An efficient regeneration protocol based on organogenesis from cotyledon explants and suitable for gene delivery has been developed for an Australian passionfruit hybrid. Multiple shoots were regenerated from 30-day-old cotyledon explants on Murashige and Skoog (MS) medium containing 6-benzylvaminopurine (BAP) and coconut water. Media pulsing experiments were conducted to investigate the effect on organogenesis of exposure time of the explants to MS containing 10 mu M BAP and 10% (v/v) coconut water, i.e. passionfruit regeneration medium (PRM). Continuous exposure of these explants to PRM maximised the number of shoots produced to 12.1 per explant. However, periods on hormone-free medium improved the appearance of the shoots and increased the number of explants with shoots from 75 to 84.6%. Further, shoots exposed for 7 days to half-strength MS supplemented with 10 mu M NAA (1-napthalene acetic acid) produced twice as many plantlets than those on half-strength MS alone. Transient GUS histochemical assays indicated delivery of the uidA gene via Agrobacterium tumefaciens.
Resumo:
A method for mass production of rosewood (Dalbergia latifolia Roxb.) trees through leaf disc organogenesis was developed and standardized. Compact callus was initiated from mature leaf discs on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg 1?1 2,4-dichlorophenoxy acetic acid (2,4-D), 5.0 mg 1?1 ?-naphthaleneacetic acid (NAA), 1.0 mg 1?1 6-benzylaminopurine (BAP) and 10% coconut water (CW). High frequency (15�20 shoots/g callus) regeneration of shoot bud differentiation was obtained on MS (3/4 reduced major elements) or Woody Plant Medium (WPM) or modified Woody Plant Medium (mWPM) supplemented with BAP (5.0 mg 1?1) and NAA (0.5 mg 1?1). Leaf abscission and shoot tip necrosis was controlled using mWPM. About 90% of the excised shoots were rooted in the mWPM supplemented with 2.0 mg 1?1 ?-indolebutyric acid (IBA) and 1.0 mg 1?1 caffeic acid. The in vitro-raised rooted plantlets were hardened for successful transplantation to soil. The transplanted plants were exposed to various humidity conditions and 80% transplant success was achieved. The in vitro-raised leaf-regenerated plants grew normally and vigorously in soil.
Resumo:
The objective of the present study was to determine the most suitable extender and their respective dilution ratios for African catfish sperm for artificial induced breeding and cryopreservation purposes. Three natural extenders were tested i.e. coconut water, sugarcane water and soybean solutions, at three different levels of sperm to extender dilutions of 1:20, 1:30 and 1:40. While Ringer solution was used as a control Diluted sperm were fertilized with ready isolated eggs to assess the fertility and hatching rate at 0, 6 and 12 hour intervals. The results showed that the eggs hatched approximately 19 to 27 hours after fertilization. In general, the fertilization and hatching rates decreased with increasing dilution ratio. With respect to natural extenders, the coconut water showed the highest fertility and hatching rates at 1:20 dilution ratio. Therefore, coconut water at 1:20 dilution ratio was the optimal condition for African catfish spermatozoa among the natural extenders investigated.
Resumo:
Passiflora alata Curtis, comumente conhecida como maracujá-doce, é uma das espécies do gênero Passiflora cultivadas comercialmente, sendo consumida in natura devido ao seu gosto adocicado. Ela também é utilizada em todo o mundo como ornamental e na medicina popular. O objetivo deste trabalho foi o estabelecimento de diferentes estratégias para a cultura in vitro de P. alata e a análise da produção de substâncias antioxidantes nos materiais obtidos in vitro, em comparação com as plantas in vivo. Diferentes tratamentos visando à quebra da dormência das sementes foram avaliados para a germinação in vitro ou in vivo, além da incubação das sementes sob tipos distintos de luz. Para o estabelecimento das culturas primárias, apices caulinares e segmentos nodais das plântulas derivadas da germinação in vitro foram cultivados em meio MSM . A taxa de alongamento dos brotos e o número de nós por brotos das culturas primárias foram aumentados pela adição de água de coco ao meio. Plantas derivadas dessas culturas foram utilizadas como fontes de explantes nodais, internodais e foliares. O potencial morfogênico de sementes sem tegumento foi também avaliado. Calos friáveis foram induzidos a partir de segmentos nodais e foliares na presença de PIC, e aqueles obtidos a partir de folhas em meio suplementado com PIC a 28,9 μM foram selecionados para o estabelecimento de culturas de células em suspensão. Após o desenvolvimento de diferentes estratégias in vitro para P. alata, folhas de plantas in vivo foram utilizadas para a avaliação de parâmetros que afetam a extração de substâncias antioxidante. O potencial antioxidante foi determinado pelo ensaio DPPH e o conteúdo de fenóis totais foi determinado utilizando o método Folin-Ciocalteau. Após o desenvolvimento do protocolo de extração, a atividade antioxidante dos diferentes materiais in vitro foi também avaliada. A eficiência antirradicalar variou entre os sistemas de cultura estudados, sendo diretamente proporcional ao conteúdo de fenóis totais dos extratos. Esses resultados indicam que as estratégias para cultura in vitro de P. alata desenvolvidas neste trabalho representam alternativas para a multiplicação de plantas e produção de substâncias fenólicas com ação antioxidante.
Resumo:
Telhados verdes são uma alternativa interessante para mitigar o risco de enchentes dada a enorme área de telhados não utilizada das superfícies impermeáveis nas áreas urbanas. Graças a sua capacidade de armazenagem de água, os telhados verdes podem reduzir significativamente o pico de escoamento dos eventos de maior pluviosidade. Investigações sobre a composição de substratos baseados em materiais locais e projetos adequados para regiões climáticas tropicais são menos frequentes. Vegetação e substrato são elementos de um telhado verde que precisam ser adaptados para cada microclima e não universalizados. O objetivo deste estudo foi avaliar o desempenho de diferentes composições de substratos baseados em solo local, biomassa de coco, condicionador de solo e componentes comerciais, com a finalidade de maximizar a capacidade de retenção da água de chuva e diminuir necessidades de manutenção. Um pré-ensaio de colunas avaliou a capacidade de retenção hídrica e a relação peso seco x peso úmido de 15 composições de substrato. As composições com melhores resultados constituíram os substratos S1(15% solo + 55% coco + 30%componentes comerciais), S2 (30% solo + 40% coco + 30%componentes comerciais) e S3 (60% solo + 10% coco + 30%componentes comerciais). A caracterização físico-química dos substratos, solo e fibra de coco foi realizada. Em seguida um teste de colunas avaliou a capacidade de retenção hídrica dos substratos sob duas condições de precipitação: uma leve (8,77 mm/h); e outra mais forte (42,0 mm/h). Os resultados apontaram que os substratos S2 e S3 apresentaram melhores resultados de retenção para ambas as intensidades de precipitação. Observou-se que S1, que apresentou melhor capacidade de retenção no pré-ensaio, teve desempenho inferior aos demais o que pode ser atribuído à maior concentração de fibra de coco na sua composição e o consequente surgimento de caminhos preferenciais ao longo do perfil da coluna, por onde a água escoou mais rapidamente. Em eventos de precipitação mais leve, os substratos reteram de 60 a 100% do total aplicado. Quando se aplicou uma intensidade de precipitação mais forte, a faixa de retenção ficou entre 40% e 59%. No entanto, as variáveis analisadas para avaliar a qualidade da água de escoamento dos substratos (pH, CE, P, NO3, NH4, Ca, Mg, Cu, Fe, Mn, Zn, Cr, Co, Ni) ficaram acima dos valores comumente encontrados na literatura, indicando que as composições aqui adotadas para os substratos podem implicar em uma fonte de poluição hídrica. Os substratos para uso em telhados verdes apresentados neste estudo atenderam seu objetivo quanto à retenção hídrica, mas a qualidade da água percolada torna seu uso inviável até o momento. Verificou-se a necessidade de estudar mais profundamente a qualidade da água lixiviada por cada componente dos substratos, individualmente, a fim de identificar as fontes dos elementos que presentes em concentrações elevadas tornam-se poluentes. Pode ser considerada a remoção de algum (s) dos componentes presentes na composição para se atingir um nível satisfatório de qualidade da água de escoamento.