958 resultados para Cobet, Carel Gabriel
Resumo:
Review from Zeitschrift f.d. Österr. gymn. 1878. I.hft.
Resumo:
Mode of access: Internet.
Resumo:
Inaugural address - Leyden.
Resumo:
Includes bibliographical references and index.
Resumo:
Mode of access: Internet.
Resumo:
Title in Greek at head of t.-p.; text in Greek.
Resumo:
Publisher's forward in French.
Resumo:
Mode of access: Internet.
Resumo:
Includes indexes.
Resumo:
Signed: Zur Erinnerung! - Gabriel - October XXIX -
Resumo:
F 5792
Resumo:
Signed: Zur Erinnerung! - Gabriel - October XXIX -
Resumo:
Delaunay and Gabriel graphs are widely studied geo-metric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Lo-cally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Gener-alized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge is necessarily in-cluded or excluded. This property allows us to choose an LGG/GLGG that optimizes a parameter of interest in the graph. We show that computing an edge max-imum GLGG for a given problem instance is NP-hard and also APX-hard. We also show that computing an LGG on a given point set with dilation ≤k is NP-hard. Finally, we give an algorithm to verify whether a given geometric graph G= (V, E) is a valid LGG.
Resumo:
Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .
Resumo:
Resumen: No vivimos solos ni morimos solos. Por ello el acompañamiento del enfermo terminal desde una actitud de amor, sostenido en su base por la esperanza trascendente, es ciertamente necesario como actitud cristiana de donación, y su reflexión se incorpora a toda antropología que no deje de lado la tanatología. Si la antropología margina el “thanatos”, se torna fragmentaria e incompleta. Morir no es el fin de la biografía que le “pasa” a los demás: es la experiencia universal a la cual cada uno ha de prepararse. Este asunto será analizado teniendo como guía a un destacado filósofo francés, Gabriel Marcel, quien, de algún modo, ha dado luz con sus escritos y su preocupación vital sobre esta temática.