989 resultados para Cobalt oxide
Resumo:
Cobalt hydroxide, cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through simple soft chemistry. The cobalt hydroxide displays hexagonal morphology with clear edges 20 nm long. This morphology and nanosize is retained through to cobalt oxide Co3O4 through a topotactical relationship. Cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through oxidation and low temperature calcination from the as-prepared cobalt hydroxide. Characterisation of these cobalt-based nanomaterials were fully developed, including X-ray diffraction, transmission electron microscopy combined with selected area electron diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Bonding of the divalent cobalt hydroxide from the oxyhydroxide and oxides by studying their high resolution XPS spectra for Co 2p3/2 and O 1s. Raman spectroscopy of the as-prepared Co(OH)2, CoO(OH) and Co3O4 nanomaterials characterised each material. The thermal stability of the materials Co(OH)2 and CoO(OH) were established. This research has developed methodology for the synthesis of cobalt oxide and cobalt oxyhydroxide nanodiscs at low temperatures.
Resumo:
Thin films of cobalt oxide have been deposited on various substrates, such as glass, Si(100), SrTiO3(100), and LaAlO3(100), by low pressure metalorganic chemical vapor deposition (MOCVD) using cobalt(IL), acetylacetonate as the precursor. Films obtained in the temperature range 400-600 degreesC were uniform and highly crystalline having Co3O4 phase as revealed by x-ray diffraction. Under similar conditions of growth, highly oriented thin films of cobalt oxide grow on SrTiO3(100) and LaAlO3(100). The microstructure and the surface morphology of cobalt oxide films on glass, Si(100) and single crystalline substrates, SrTiO3(100) and LaAlO3(100) were studied by scanning electron microscopy. Optical properties of the films were studied by uv-visible-near IR spectrophotometry.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
Co3O4 catalysts were prepared by combustion synthesis using different fuels glycine (G), ODH (O) and urea (U). Morphological changes of the materials were observed by using different fuels. The prepared catalysts were characterized by XRD, XPS, SEM, TEM, BET and DRIFTS analysis. All compounds showed 100% conversion of CO below 175C. The prepared catalysts exhibited very high stability and conversions did not decrease even after 50 h of continuous operation. The oxygen storage capacity (OSC) of materials was measured by H-2-TPR analysis. Co3O4-O is having high OSC among the synthesized catalysts. The activation energies of these catalysts were found to be in the range of 42.3-64.8 kJ mol(-1). With DRIFTS analysis, the surface carbonates, superoxide anions, adsorbed CO, O-2 species on the catalyst surface were found and this information was used to develop a detailed reaction pathway. A kinetic model was developed with the help of proposed mechanism and used to fit the data. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
In this work, we prepared a new magnetically recoverable CoO catalyst through the deposition of the catalytic active metal nanoparticles of 2-3 nm on silica-coated magnetite nanoparticles to facilitate the solid separation from liquid media. The catalyst was fully characterized and presented interesting properties in the oxidation of cyclohexene, as for example, selectivity to the allylic oxidation product. It was also observed that CoO is the most active species when compared to Co(2+), Co(3)O(4) and Fe(3)O(4) in the catalytic conditions studied.
Resumo:
The electrochemical behavior of a coating of cobalt oxide on cold-rolled steel in alkaline sodium sulfate was Studied using the electrochemical techniques of open-circuit potential measurements and electrochemical impedance spectroscopy. The coating was prepared at different annealing temperatures ranging from 350 to 750 degreesC and characterized by SEM, EDX and XRD. Below 550 degreesC the composition of the coating was basically of Co3O4. At 750 degreesC CoO was formed and big cracks appeared on the film exposing an inner layer of iron oxides. Analysis of the EIS data is very difficult because of the complexity of the interface structure. It can be inferred that the charge transfer resistance of the coatings prepared at 350 and 450 C were higher than those for the coatings prepared at temperatures above 550 degreesC. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 degrees C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g(-1) at 1 A g(-1) and presenting long-term cycling stability. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.
Resumo:
In an attempt to make nanofibres based upon cobalt oxides, a novel compound a hydrated cobalt hydroxy carbonate was formed. This compound is related to the minerals of the rosasite mineral group. X-ray diffraction showed that the formed compound was a cobalt hydroxy carbonate and SEM displayed bundles of fibres on the micron scale in length and nanoscale in width. The morphology was compared with that of the rosasite mineral group. XPS proved two bond energies for cobalt and three for oxygen in the compound. The compound was characterised by vibrational spectroscopy and the spectra related to minerals of the rosasite mineral group. The stability of the synthetic mineral was limited to temperatures below 200°C.
Resumo:
This review collects and summarises the biological applications of the element cobalt. Small amounts of the ferromagnetic metal can be found in rock, soil, plants and animals, but is mainly obtained as a by-product of nickel and copper mining, and is separated from the ores (mainly cobaltite, erythrite, glaucodot and skutterudite) using a variety of methods. Compounds of cobalt include several oxides, including: green cobalt(II) (CoO), blue cobalt(II,III) (Co3O4), and black cobalt(III) (Co2O3); four halides including pink cobalt(II) fluoride (CoF2), blue cobalt(II) chloride (CoCl2), green cobalt(II) bromide (CoBr2), and blue-black cobalt(II) iodide (CoI2). The main application of cobalt is in its metal form in cobalt-based super alloys, though other uses include lithium cobalt oxide batteries, chemical reaction catalyst, pigments and colouring, and radioisotopes in medicine. It is known to mimic hypoxia on the cellular level by stabilizing the α subunit of hypoxia inducing factor (HIF), when chemically applied as cobalt chloride (CoCl2). This is seen in many biological research applications, where it has shown to promote angiogenesis, erythropoiesis and anaerobic metabolism through the transcriptional activation of genes such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO), contributing significantly to the pathophysiology of major categories of disease, such as myocardial, renal and cerebral ischaemia, high altitude related maladies and bone defects. As a necessary constituent for the formation of vitamin B12, it is essential to all animals, including humans, however excessive exposure can lead to tissue and cellular toxicity. Cobalt has been shown to provide promising potential in clinical applications, however further studies are necessary to clarify its role in hypoxia-responsive genes and the applications of cobalt-chloride treated tissues.
Resumo:
In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.
Resumo:
Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.
Resumo:
Deposition of good quality thin films of Lithium Cobalt Oxide (LiCoO2), by sputtering is preceded by target conditioning, which dictates the surface composition, morphology and electrochemical performance of the deposited film. Sputtering from a Virgin target surface, results in films with excess of the more reactive elements. The concentration of these reactive elements in the films decreases until the system reaches a steady state after sufficient sputtering from the target. This paper discusses the deposition kinetics in terms of target conditioning of LiCoO2. The composition, morphology and texturing of deposited film during various hours of sputtering were analyzed using X-ray photoelectron Spectroscopy (XPS) and Field Emission Scanning electron microscopy (FESEM). The compositional stability is not observed in the films formed during the initial hours or Sputtering from the fresh target, which becomes stable after several hours of sputtering. The Li and Co concentration in the Films deposited subsequently is found to be varying and possible causes are discussed. After the compositional stability is reached, electrochemical analysis of LiCoO2 thin films was performed, which shows a discharge capacity of 129 mu Ah/cm(2).