974 resultados para Coastal landscape
Resumo:
Some years ago visitors and natives had a different way of enjoying the landscape of the coastal villages located in Santa Elena Province, in Ecuador. Nowadays natives of those towns are concerned about the emergent tourist industry, which is not just offering lodging but also it is increasing the construction of vacation homes or second homes. This development is showing notorious social and spatial changes in those coastal towns. Since 80's, the real-estate investments in vacation homes have not stopped. In addition, it has been increasing year in year out, to the north of the Province. Nowadays there are not just homes but also luxury complex of buildings attracting more and more seasonal tourists. This real estate growing has been constantly changing the landscape and shaping the economy of those towns. The authorities in this province are aware of those effects citing in the Province's Master Plan of Development the lack of land use policies. This study aims to describe the socioeconomic activity of coastal villages located in Santa Elena Province, which - during many years - have a resource-based economy: agriculture and fishing economy; but during this last years they have been trying to switch it to tourism. The analysis of spatial changes of the landscape and its effects as a consequence of the land use is another goal of this work. Finally, this study describes the quest of new natural tourist attractions that villagers and stakeholders have taken recently. Key words: Nature and society, sociospatial, rural landscape, coastal landscape, tourism.
Resumo:
South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages)
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)
Resumo:
In a proof-of-concept study, Britton et al. (2008) demonstrated that the isotopic composition of halophytic plants can be traced in the skeletal tissues of their animal consumers. Here we apply the method to domestic herbivore remains (n = 303) from nine archaeological sites in or near the Flemish coastal plain (Belgium), where, prior to embankments, salt-marshes offered extensive pasture grounds for domestic herbivores. The sites span a period of ∼1500 years (Roman to late medieval period), during which the coastal landscape was progressively transformed from little managed wetlands to a fully embanked polder area. The bulk collagen data show variations between sites and over time, which are consistent with this historical framework and are interpreted as reflecting environmental change and differences in animal management in the coastal plain throughout the late Holocene. The study demonstrates the immense value of faunal stable isotope analysis for characterising coastal husbandry strategies beyond the means of traditional zooarchaeological techniques.
Resumo:
The association of several favorable factors has resulted in the development of a wide barchan dune field that stands out as a fundamental element in the coastal landscape of southern Santa Catarina state in Brazil. This original ecosystem is being destroyed and highly modified, due to urbanization. This work identifies and discusses its basic characteristics and analyzes the favorable factors for its preservation, in the foreseen of both a sustainable future and potential incomes from ecotourism. The knowledge of the geologic evolution allows to associate this transgressive Holocene dunes formation to more dissipative beach conditions. Spatial differences on morphodynamics are related to local and regional contrasts in the sediment budget, with an influence on gradients of wave attenuation in the inner shelf and consequently with influence in the level of coastal erosion. The link between relative sea level changes and coastal eolian sedimentation can be used to integrate coastal eolian systems to the sequence stratigraphy model. The main accumulation phase of eolian sediments would occur during the final transgressive and highstand systems tracts. Considering the global character of Quaternary relative sea level changes, the Laguna transgressive dune field should be correlated with similar eolian deposits developed along other parts of the Brazilian coast compatibles with the model of dunefield initiation during rising and highstand sea level phases.
Resumo:
An analysis of a stretch of coastline shows multiple alterations through environmental climate actions. The narrow, fragile line displays singularities due to three basic causes. The first is the discontinuity in feed or localised loss of solid coastal material. Called massics, their simplest examples are deltas and undersea canyons. The second is due to a brusque change in the alignment of the shoreline’s edge, headlands, groins, harbour and defence works. Given the name of geometric singularities, their simplest uses are artificial beaches in the shelter of a straight groin or spits. The third is due to littoral dynamics, emerged or submerged obstacles which diffract and refract wave action, causing a change in the sea level’s super-elevation in breaker areas. Called dynamics, the simplest examples are salients, tombolos and shells. Discussion of the causes giving rise to variations in the coastline and formation of singularities is the raison d’être of investigation, using actual cases to check the suitability of the classification proposed, the tangential or differential action of waves on the coastal landscape in addition to possible simple, compound and complex shapes detected in nature, both in erosion and deposit processes
Resumo:
Patterns of mangrove vegetation in two distinct basins of Florida Coastal Everglades (FCE), Shark River estuary and Taylor River Slough, represent unique opportunities to test hypotheses that root dynamics respond to gradients of resources, regulators, and hydroperiod. We propose that soil total phosphorus (P) gradients in these two coastal basins of FCE cause specific patterns in belowground biomass allocation and net primary productivity that facilitate nutrient acquisition, but also minimize stress from regulators and hydroperiod in flooded soil conditions. Shark River basin has higher P and tidal hydrology with riverine mangroves, in contrast to scrub mangroves of Taylor basin with more permanent flooding and lower P across the coastal landscape. Belowground biomass (0–90 cm) of mangrove sites in Shark River and Taylor River basins ranged from 2317 to 4673 g m-2, with the highest contribution (62–85%) of roots in the shallow root zone (0–45 cm) compared to the deeper root zone (45–90 cm). Total root productivity did not vary significantly among sites and ranged from 407 to 643 g m-2 y-1. Root production in the shallow root zone accounted for 57–78% of total production. Root turnover rates ranged from 0.04 to 0.60 y-1 and consistently decreased as the root size class distribution increased from fine to coarse roots, indicating differences in root longevity. Fine root biomass was negatively correlated with soil P density and frequency of inundation, whereas fine root turnover decreased with increasing soil N:P ratios. Lower P availability in Taylor River basin relative to Shark River basin, along with higher regulator and hydroperiod stress, confirms our hypothesis that interactions of stress from resource limitation and long duration of hydroperiod account for higher fine root biomass along with lower fine root production and turnover. Because fine root production and organic matter accumulation are the primary processes controlling soil formation and accretion in scrub mangrove forests, root dynamics in the P-limited carbonate ecosystem of south Florida have a major controlling role as to how mangroves respond to future impacts of sealevel rise.
Resumo:
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.
Resumo:
Bargara Pasturage Reserve: Future Visions This exhibition showcases the work of Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students in response to issues of sustainability in a coastal wetland known as the Bargara Pasturage Reserve; an exemplar of the many issues facing sensitive coastal places in Queensland today. The 312ha Pasturage Reserve at Bargara is the only biofilter between the pressures of Bargara’s urban and tourism expansion, surrounding sugarcane farming, and the Great Sandy Marine Park, including the largest concentration of nesting marine turtles on the eastern Australian mainland. This ephemeral wetland, while struggling to fulfil its coastal biofiltration function, is also in high demand for passive recreation, and the project partners’ priorities were to meet both of these challenges. The students were required to plan and design for the best balance possible amongst, but not limited to: wetland and coastal ecological health, enhancement of cultural heritage and values, sustainable urban development, and local economic health. To understand these challenges, QUT staff and students met with partners, visited and analysed the Pasturage Reserve, spent time in and around Bargara talking to locals and inviting dialogue with Indigenous representatives and the South Sea Islander community. We then went home to Brisbane to undertake theoretical and technical research, and then worked to produce 11 Strategic Plans, 2 Environmental Management Plans and 33 Detailed Designs. One group of students analysed the Bargara coastal landscape as an historical and ongoing series of conversations between ecological systems, cultural heritage, community and stakeholders. Another group identified the landscape as neither ‘urban,’ ‘rural,’ nor ‘natural,’ instead identifying it metaphorically as a series of layered thematic ‘fields’ such as water, conservation, reconciliation, and educational fields. These landscape analyses became the organising mechanisms for strategic planning. An outstanding Strategic Plan was produced by Zhang, Lemberg and Jensen, entitled Metanoia, which means to ‘make a change as the result of reflection on values’. Three implementation phases of “flow”, “flux”, and “flex” span twenty-five years, and present a vision a coastal and marine research and conservation hub, with a focus on coastal wetland function, turtle habitat and coral reef conservation. An Environmental Management Plan by Brand and Stickland focuses on protecting and improving wetland biodiversity and habitat quality, and increasing hydrological and water quality function; vital in a coastal area of such high conservation value. After the planning phase, students individually developed detailed design proposals responsive to their plans. From Metanoia, Zhang concentrated on wetland access and interpretation, proposing four focal places to form the nucleus of a wider pattern of connectivity, and to encourage community engagement with coastal environmental management and education. Jensen tackled the thorny issue of coastal urban development, proposing a sensitive staged eco-village model which maintains both ecological and recreational connectivity between the wetland and the marine environment. This project offered QUT’s partners many innovative options to inform their future planning. BSC, BMRG and Oceanwatch Australia are currently engaged in the investigation of on-ground opportunities drawing on these options.
Resumo:
Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.
Resumo:
En la tesi es presenta una anàlisi de l'evolució dels canvis succeïts en el paisatge costaner de la Costa Brava (22 municipis litorals) en els darrers cinquanta anys (1956-2003); un estudi de la seva estructura ecopaisatgística, actual i passada, amb una especial èmfasi en la diagnosi de les conseqüències geoambientals de l'esclat urbanístic iniciat a la dècada de 1960, i s'ha determinat quina ha estat la tendència de canvi en els darrers vint-i-cinc anys la qual s'ha utilitzat per a elaborar models explicatius de la dinàmica territorial seguida i projectar-los cap al futur tot dissenyant escenaris probables. A les Bases teòriques s'exposa en quina parcel·la del coneixement científic es situa aquesta recerca i es repassa l'evolució dels diferents corrents i enfocaments que han precedit, dins la Ciència Geogràfica, els estudis sobre transformació del paisatge. Es posa especial en els principis i metodologies que plantegen les dues escoles d'anàlisi del paisatge en que es basa aquesta tesi: la Landscape Ecology i la estructurada a l'entorn del programa internacional Land Use and Land Cover Change (LUCC). S'ha dissenyat una pauta metodològica per a l'anàlisi paisatgística d'un territori a diferents escales: des de l'àmbit regional de tota la Costa Brava (66.230 ha), on es poden detectar les tendències generals, fins l'estudi detallat a escala local, on s'ha pres com a àrea d'estudi tres municipis del centre de la Costa Brava (6.960 Ha): Palamós, Calonge i Castell-Platja d'Aro. Els principals resultats obtinguts són els següents: Una cartografia d'usos i cobertes del sòl de tres períodes temporals i la conseqüent interpretació espacial per a cada etapa: 1957 (situació preturística), 1980 (inici de les actuacions dels ajuntaments democràtics) i 2003 (actualitat). Una anàlisi quantitativa de la transformació del paisatge i de les relacions espacials associades al canvi, a partir de la cartografia d'usos i cobertes del sòl dels tres períodes mapificats (1956, 1980, 2003). Amb l'objectiu d'arribar a definir quina ha estat la dinàmica dels canvis ocorreguts al llarg dels darrers gairebé cinquanta anys. Una anàlisi de l'estructura del mosaic paisatgístic de cadascun dels talls temporals per mitjà de l'aplicació dels principals índexs de l'Ecologia del Paisatge. S'ha analitzat la geometria de la conversió dels usos del sòl i s'han posat de manifest les repercussions ecològiques i paisatgístiques d'aquests canvis. Per una banda, a partir del càlcul i interpretació dels índexos esmentats s'ha analitzat l'evolució de la morfologia i la distribució territorial dels quatre principals usos i cobertes del sòl de la Costa Brava. Per l'altra, per a la Costa Brava centre s'ha analitzat l'estat dels dos sistemes naturals del litoral amb més pressió antròpica: la franja estrictament costanera i les masses forestals. Respecte als tres municipis de la Costa Brava centre s'han tingut en compte en l'anàlisi de l'evolució del paisatge a escala local, les actuacions desenvolupades en l'àmbit urbanístic municipal i les seves conseqüències paisatgístiques i ambientals. A partir de la informació ja processada, s'han detectat les tendències de canvi a partir de models de canvi d'usos i cobertes del sòl. S'han incorporat també els factors biofísics i antròpics, socials i econòmics, condicionants i responsables d'una determinada utilització del territori en cadascun dels tres períodes. Mitjançant l'anàlisi multivariable s'ha intentat descobrir el conjunt de factors que influencien en la taxa i el patró espacial de canvi d'usos i les seves conseqüències territorials. Finalment s'ha aplicat un model de simulació, basat en els automatismes cel·lulars de Markov, per tal de projectar les tendències de canvi i plantejar escenaris futurs, una eina bàsica per a la planificació futura del territori i per al control de les problemàtiques ambientals. Aquestes mesures serveixen per a definir, per a la Costa Brava centre, un patró espacial dels canvis d'usos del sòl a nivell local, i, per al conjunt de la Costa Brava, per a predir, mitjançant models de simulació quantitativa, els possibles desenvolupaments i per estimar els impactes.
Resumo:
The Brazilian coast has a wide variety of complex environments and ecosystems along the coast, about 80% are represented by sandbanks and dunes. The coastal ecosystems were the first to suffer the impacts man and places, as the very fragile ecosystems, are somehow altered. Are few areas of restinga well as natural features, very few protected in conservation units. Only in the last two decades the Brazilian restinga have been studies that are showing their importance for biodiversity of the country, though its economic importance remains largely unknown. In Rio Grande do Norte in the restinga vegetation and dune environments extend for almost the entire coast. The dunes are distinguished in the coastal landscape of the state due to the exuberance of its forms, heights and coating plants. The dune system is of fundamental importance for the maintenance of coastal urban settlements, especially for the city of Natal, acting on the hydrological dynamics of water table and reducing the effect of wind and movement of grains of sand to the interior and thus avoiding the burial City. However, the ecosystem of restinga and dune environments have been weakened and destroyed according to the intense urbanization and the knowledge of the vegetation of restinga installed on the dunes are still scarce. Thus, the objective of this study was to characterize the structure and floristic composition of vegetation established on a dune in the Dunes State Park Christmas and gather information to develop a model of recovery of the dune ecosystem. This dissertation is composed of 2 chapters, the first being: Structure of the vegetation of the dunes Dunes State Park in Natal, RN with the objective of describing the structure and composition of species of tree-shrub vegetation of restinga dunes of the Parque das Dunas and second: Recovery of degraded areas in a sand dune, which aimed to review the terms and concepts used in the theme of recovery and the techniques for recovery of degraded areas with emphasis on sandy environments and poor in nutrients, reporting some experiences within and external to Brazil the country, mainly in the Northeast and dunes positive and negative aspects that should be followed in building a model to be adopted for the recovery of local dunes
Resumo:
The study area consist in high sensitivity environments located on the northern coast of Rio Grande do Norte, Northeast Brazil. The barrier island are the main geomorphological features on the coastal landscape, being naturally instable and surrounded by industrial activities like oil fields, salt industry, shrimp farms and urban areas sometimes installed parallel to the coast, combined with coast engineering interventions. High energy hydrodynamic process are responsible for the morphological instability of the coast. The study was based on remote sensing data obtained between 1954 and 2007 which consist in orbital images from Landsat, CBERS and Ikonos satellites and aerial photos. With all data integrated on GIS environment it was possible to update thematic maps of geology, geomorphology, vegetation, soil and landuse and development of multitemporal maps pointing areas with erosion and depositions of sediments, defining the critical erosion process on this region. The bigger morphological changes are related to changes on wind patterns during the year, terrestrial and sea breezes during the day, with spits and barrier island migration, opening and closing of channels like the one parallel to the coast on the area of Serra and Macau oil fields. These factors combined with the significant reduction on sediment budgets due to the loss of natural spaces to sediment reworking contribute to the low resilience which tends to be growing on the area of Serra and Macau oil fields. In front of such scenery a detailed monitoring was done in order to find technological possibilities for coastal restoration. A pilot area was defined to start the project of mangrove restore together with beach nourishment in order to minimize the effect of the erosion caused by the channel parallel to the coast, contributing to stabilize the northeast channel as the main one. It s expected that such methodology will aid the coastal environments restoration and the balance between industrial activities and coastal erosion
Resumo:
This study shows the results of a research developed in the coastal regions of the Maxaranguape and Touros municipalities, more specific in the mobile dune fields of the Rio Grande do Norte's eastern coast. Although the coastal zones, represent a small percentage of the earth's surface it concentrates a great part of the world's population. The Rio Grande do Norte's state coastal landscape mosaic composed by the dune fields suggest a dynamic scene of changes in the spatial and temporal arranges, with significant changes in the geometry of the sedimentary cover. Following this perspective this research has the objective to map the emerged coastal zone of the Rio Grande do Norte's eastern coast under the perspective of the time-space evolution of the mobile dune fields using geoprocessing techniques, which includes remote sensing, digital images processing and geographic information system (GIS). The results imply the issue of thematic maps: Geologic map; multitemporal evolution map of the mobile dune fields; quantification of the mobile dune fields differences map; temporal evolution of the mobile dune fields surrounds map. The El Niño episodes have directly affected the atmospheric circulation, what have enhanced the sedimentary input in the sand dune, what can justify the relative area growth between the years of 1993 and 2001. The dynamic of the landscape transition were higher than the stability of the spatial pattern of the dune and it's surrounds, as a result the Rio Grande do Norte eastern coast dune fields, specially the mobile dunes from Touros, Zumbi and Maracajau have shown a decrease on the sedimentary cover without vegetation area from 1970 to 2007. Therefore, the data acquired and the techniques used, can be, eventually applied to the mobile dune fields monitoring in order to preserve the dune ecosystems in the Rio Grande do Norte coast
Resumo:
With process urbanization process the Brazilian cities have been goin through, Natal/RN does not differ from the other ones, it has had a fast, inordinate and planned urbanization, but not applied, it has caused a high increase of social environmental problems. One of the worrying problems observed is the change in the coastal landscape, which has caused serious damage to the city‟s population, more specifically, of Ponta Negra beach neighborhood. For the geographical studies, the issue, concerning the occupation of the beaches that has been getting higher and higher in the last decades is extremely important because these, in addition to being used as homes in the new urban configuration, have incorporated new ways of environmental interference, without a simultaneous advance of knowledge which would be necessary for a more suitable and rational use of litoral spaces. Thus, the current assignment aimed to focus the coastal landscape of Ponta Negra Beach, in the city of Natal/RN, checking and analyzing the effects caused by anthropic and natural action, and the way it reflects in the quality of life of the resident, working population and of the frequenters as well as the landscape transformations in the area which is object of study, from 1970 through 2010. The methodology used followed to stages, the first concerned the theoretical work bibliographic surveying and composition; and second one the empirical work marking of the environmental characterization and application of the questionnaires. So, we can measure that Ponta Negra, is very susceptible to environmental changes, the ones caused by the natural dynamics of the beach, as well as the human actions (society) in this really fragile and mutable space, so it needs, a more profound systematic study about the coastal landscape. In order to reach a minimization of the change of the landscapes in the coastal zones there must be an integrated management of the environments, based on the planning of actions and territorial reordination of the occupations of these so important spaces, environmentally, as well as socioeconomically. Whereas, only this way, we will have a sustentable development and a suitable use of that space