967 resultados para Coastal change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal areas are dynamic environments that are home to billions of people worldwide and provide areas of unique natural importance. As such, coastal change is of considerable local and global interest, not only within the geological realm, but also in terms of socioeconomic and biodiversity impacts. An accurate understanding of how changes in relative sea level, geological processes and extreme events, such as storms and tsunamis, have interacted to shape and change the Earth’s coastlines over millennia is fundamental to future projections of coastal change. On the basis of this, researchers in these, and various other aspects of coastal change were brought together in late 2010 at the University of Hong Kong for the first meeting of International Geoscience Program Project 588 (IGCP588) e Preparing for Coastal Change. This special issue showcases some of the results presented at this meeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a number of famous theoretical and experimental works that oriented themselves to solve actual problem of coastal change, including the change of coastline, under versatile influence of oceanic wind waves. In this paper the author would like to give supplementally a few new behaviours of that phenomena observed along the coasts of Vietnam, such as coastal collapse & primitive on-the-spot accumulation, material hurl, etc. Most simple theoretical explanation of them grounding on the Newton's second law has been presented and as results of that there appeared such notion as indicator and criterion which could be used for demarcation of different behaviours in initial stage of general coastal changing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holocene silts (salt marshes) and highest intertidal-supratidal peats are superbly exposed on a 15 kin coastal transect which reveals two laterally extensive units of annually banded silts (Beds 3, 7) associated with three transgressive-regressive silt-peat cycles (early sixth-early fourth millennium BC). Bed 3 in places is concordantly and gradationally related to peats above and below, but in others transgresses older strata. Bed 7 also grades up into peat, but everywhere overlies a discordance. The banding in Bed 3 at three main and two minor sites was resolved and characterized texturally at high-resolution (2.5/5 mm contiguous slices) using laser granulometry (LS230 with PIDS) and a comprehensive scheme of data-assessment. Most of Bed 3 formed very rapidly, at peak values of several tens of millimetres annually, in accordance with modelled effects of sea-level fluctuations on mature marshes (bed concordant and gradational) and on marshes growing up after coastal erosion and retreat (bed with discordant base). Using data from the modern Severn Estuary, the textural contrast within bands, and its variation between bands, points to a variable but overall milder mid-Holocene climate than today. The inter-annual variability affected marsh dynamics, as shown by the behaviour of the finely divided plant tissues present. Given local calibration, the methodology is applicable to other tidal systems with banded silts in Britain and mainland northwest Europe. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learn from yesterday, live for today hope for tomorrow. When Albert Einstein penned these opening words, the realm of planning was least on his mind despite the aptness of the thoughts. This paper, having regard to this quotation, questions whether demographic change in one coastal area is occurring at a faster rate than in non–coastal areas? The South West coastal area of Victoria, from 1981 onwards, has witnessed a dramatic increase in population and also major shifts in the social and economic characteristics of the region. What have been the historic demographic and employment characteristics of the area and has there been a shift in these characteristics leading to the rapid population growth? These questions are considered using the City of Warrnambool, the largest urban centre in South West Victoria, as a study vehicle. The impact of a growing population on the municipal landscape can be demanding in terms of land use planning, land supply and the urban design. This paper will review the population growth using a shift share analysis method compared against overall growth patterns in the Victorian state population and Australia overall. It will then examine government population forecasts for the City of Warrnambool and suggest those impacts upon the current City of Warrnambool landscape.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The unique combination of landscapes and processes that are present and operate on Fraser Island (K'gari) create a dynamic setting that is capable of recording past environmental events, climate variations and former landscapes. Likewise, its geographic position makes Fraser Island sensitive to those events and processes. Based on optically stimulated luminescence dating, the records archived within the world's largest sand island span a period that has the potential to exceed 750 ka and contain specific records that are of extremely high resolution over the past 40,000 years. This is due to the geographic position of Fraser Island, which lies in the coastal subtropical region of Queensland Australia. Fraser Island is exposed to the open ocean currents of the Coral Sea on the east coast and the waters of Hervey Bay on its western margin and is positioned to receive moisture from the Indo-Australian monsoon, southeast trade winds and experiences occasional tropical and ex-tropical cyclones. We review literature that presents the current level of understanding of sea level change, ecological variation and environmental change on Fraser Island. The previous works illustrate the importance of Fraser Island and may link processes, environments and climates on Fraser Island with global records.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Management of coastal development in Hawaii is based on the location of the certified shoreline, which is representative of the upper limit of marine inundation within the last several years. Though the certified shoreline location is significantly more variable than long-term erosion indicators, its migration will still follow the coastline's general trend. The long-term migration of Hawaii’s coasts will be significantly controlled by rising sea level. However, land use decisions adjacent to the shoreline and the shape and nature of the nearshore environment are also important controls to coastal migration. Though each of the islands has experienced local sea-level rise over the course of the last century, there are still locations across the islands of Kauai, Oahu, and Maui, which show long- term accretion or anomalously high erosion rates relative to their regions. As a result, engineering rules of thumb such as the Brunn rule do not always predict coastal migration and beach profile equilibrium in Hawaii. With coastlines facing all points of the compass rose, anthropogenic alteration of the coasts, complex coastal environments such as coral reefs, and the limited capacity to predict coastal change, Hawaii will require a more robust suite of proactive coastal management policies to weather future changes to its coastline. Continuing to use the current certified shoreline, adopting more stringent coastal setback rules similar to Kauai County, adding realistic sea-level rise components for all types of coastal planning, and developing regional beach management plans are some of the recommended adaptation strategies for Hawaii. (PDF contains 4 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coastal hazards such as flooding and erosion threaten many coastal communities and ecosystems. With documented increases in both storm frequency and intensity and projected acceleration of sea level rise, incorporating the impacts of climate change and variability into coastal vulnerability assessments is becoming a necessary, yet challenging task. We are developing an integrated approach to probabilistically incorporate the impacts of climate change into coastal vulnerability assessments via a multi-scale, multi-hazard methodology. By examining the combined hazards of episodic flooding/inundation and storm induced coastal change with chronic trends under a range of future climate change scenarios, a quantitative framework can be established to promote more sciencebased decision making in the coastal zone. Our focus here is on an initial application of our method in southern Oregon, United States. (PDF contains 5 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Historical definitions of what determines whether one lives in a coastal area or not have varied over time. According to Culliton (1998), a “coastal county” is defined as a county with at least 15% of its total land area located within a nation’s coastal watershed. This emphasizes the land areas within which water flows into the ocean or Great Lakes, but may be better suited for ecosystems or water quality research (Crowell et al. 2007). Some Federal Emergency Management Agency (FEMA) documents suggest that “coastal” includes shoreline-adjacent coastal counties, and perhaps even counties impacted by flooding from coastal storms. An accurate definition of “coastal” is critical in this regard since FEMA uses such definitions to revise and modernize their Flood Insurance Rate Maps (Crowell et al. 2007). A recent map published by the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Services Center for the Coastal Change Analysis Program shows that the “coastal” boundary covers the entire state of New York and Michigan, while nearly all of South Carolina is considered “coastal.” The definition of “coastal” one chooses can have major implications, including a simple count of coastal population and the influence of local or state coastal policies. There is, however, one aspect of defining what is “coastal” that has often been overlooked; using atmospheric long-term climate variables to define the inland extent of the coastal zone. This definition, which incorporates temperature, precipitation, wind speed, and relative humidity, is furthermore scalable and globally applicable - even in the face of shifting shorelines. A robust definition using common climate variables should condense the large broad definition often associated with “coastal” such that completely landlocked locations would no longer be considered “coastal.” Moreover, the resulting definition, “coastal climate” or “climatology of the coast”, will help coastal resource managers make better-informed decisions on a wide range of climatologically-influenced issues. The following sections outline the methodology employed to derive some new maps of coastal boundaries in the United States. (PDF contains 3 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation combines three separate studies that measure coastal change using airborne laser data. The initial study develops a method for measuring subaerial and subaqueous volume change incrementally alongshore, and compares those measurements to shoreline change in order to quantify their relationship in Palm Beach County, Florida. A poor correlation (R2 = 0.39) was found between shoreline and volume change before the hurricane season in the northern section of Palm Beach County because of beach nourishment and inlet dynamics. However, a relatively high R2 value of 0.78 in the southern section of Palm Beach County was found due to little disturbance from tidal inlets and coastal engineering projects. The shoreline and volume change caused by the 2004 hurricane season was poorly correlated with R 2 values of 0.02 and 0.42 for the north and south sections, respectively. The second study uses airborne laser data to investigate if there is a significant relationship between shoreline migration before and after Hurricane Ivan near Panama City, Florida. In addition, the relationship between shoreline change and subaerial volume was quantified and a new method for quantifying subaqueous sediment change was developed. No significant spatial relationship was found between shoreline migration before and after the hurricane. Utilization of a single coefficient to represent all relationships between shoreline and subaerial volume change was found to be problematic due to the spatial variability in the linear relationship. Differences in bathymetric data show only a small portion of sediment was transported beyond the active zone and most sediment remained within the active zone despite the occurrence of a hurricane. The third study uses airborne laser bathymetry to measure the offshore limit of change, and compares that location with calculated depth of closures and subaqueous geomorphology. There appears to be strong geologic control of the depth of closure in Broward and Miami-Dade Counties. North of Hillsboro Inlet, hydrodynamics control the geomorphology which in turn indicates the location of the depth of closure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation combines three separate studies that measure coastal change using airborne laser data. The initial study develops a method for measuring subaerial and subaqueous volume change incrementally alongshore, and compares those measurements to shoreline change in order to quantify their relationship in Palm Beach County, Florida. A poor correlation (R2 = 0.39) was found between shoreline and volume change before the hurricane season in the northern section of Palm Beach County because of beach nourishment and inlet dynamics. However, a relatively high R2 value of 0.78 in the southern section of Palm Beach County was found due to little disturbance from tidal inlets and coastal engineering projects. The shoreline and volume change caused by the 2004 hurricane season was poorly correlated with R2 values of 0.02 and 0.42 for the north and south sections, respectively. The second study uses airborne laser data to investigate if there is a significant relationship between shoreline migration before and after Hurricane Ivan near Panama City, Florida. In addition, the relationship between shoreline change and subaerial volume was quantified and a new method for quantifying subaqueous sediment change was developed. No significant spatial relationship was found between shoreline migration before and after the hurricane. Utilization of a single coefficient to represent all relationships between shoreline and subaerial volume change was found to be problematic due to the spatial variability in the linear relationship. Differences in bathymetric data show only a small portion of sediment was transported beyond the active zone and most sediment remained within the active zone despite the occurrence of a hurricane. The third study uses airborne laser bathymetry to measure the offshore limit of change, and compares that location with calculated depth of closures and subaqueous geomorphology. There appears to be strong geologic control of the depth of closure in Broward and Miami-Dade Counties. North of Hillsboro Inlet, hydrodynamics control the geomorphology which in turn indicates the location of the depth of closure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The geography of Scotland, with a highly undulating hinterland, long and indented coastline, together with a large number of islands, means that much social and economic activity is largely located at the coast. The importance of the coast is further highlighted by the large number of ecosystem services derived from the coast. The threat posed by climate change, particularly current and future sea level rise, is of considerable concern and the associated coastal erosion and coastal flooding has the potential to have a substantial effect on the socioeconomic activity of the whole country. Currently, the knowledge base of coastal erosion is poor, which serves to hinder the current and future management of the coast. This research reported here aimed to establish four key aspects of coastal erosion within Scotland: the physical susceptibility of the coast to erosion; the assets exposed to coastal erosion; the vulnerability of communities to coastal erosion; and the coastal erosion risk to those communities. Coastal erosion susceptibility was modelled here within a GIS, using data for ground elevation, rockhead elevation, wave exposure and proximity to the open coast. Combining these data produced the Underlying Physical Susceptibility Model (UPSM), in the form of a 50 m2 raster of national coverage. The Coastal Erosion Susceptibility Model (CESM) was produced with the addition of sediment supply and coastal defence data, which then moderates the outputs of the UPSM. Asset data for dwellings, key assets, transport infrastructure, historic assets, and natural assets were used along with the UPSM and CESM to assess their degree of exposure to coastal erosion. A Coastal Erosion Vulnerability Model (CEVM) was produced using Experian Mosaic Scotland (a geodemographic classification which identifies 44 different social groups within Scotland) to classify populations based upon 11 vulnerability variables. Dwellings were assigned a CESM and CEVM score in order to establish their coastal erosion risk. This research demonstrated that the issue of coastal erosion will impact on a relatively low number of properties compared to those impacted by flooding (both coastal and fluvial) as many dwellings are already protected by coastal defences. There is therefore, a considerable future liability, and great pressure for coastal defences to be maintained and upgraded in their current form. The use of the CEVM is a novel inclusion within a coastal erosion assessment for Scotland. Use of the CEVM established that coastal erosion risk is not distributed equally amongst the Scottish coastal population and highlighted that risk can be reduced by either reducing exposure or reducing vulnerability. Thus far in Scotland, reducing exposure has been the primary management approach, which has a number of implications with regards social justice. This research identified the existing data gaps that should be addressed by future research in order to further improve coastal management in Scotland. Future research should focus on assessing historical coastal change rates on a national scale, improve modelling of national scale wave exposure, enhance the information held about current coastal defences and, determine the direct and indirect economic cost associated with the loss of different asset types. It is also necessary to clarify the social justice implications of using adaptation approaches to manage coastal erosion as well as establishing a method to communicate the susceptibility, exposure, vulnerability and risk aspects whilst minimising the potential negative impacts (e.g. property blight) of releasing such information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document, Guidance for Benthic Habitat Mapping: An Aerial Photographic Approach, describes proven technology that can be applied in an operational manner by state-level scientists and resource managers. This information is based on the experience gained by NOAA Coastal Services Center staff and state-level cooperators in the production of a series of benthic habitat data sets in Delaware, Florida, Maine, Massachusetts, New York, Rhode Island, the Virgin Islands, and Washington, as well as during Center-sponsored workshops on coral remote sensing and seagrass and aquatic habitat assessment. (PDF contains 39 pages) The original benthic habitat document, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (Dobson et al.), was published by the Department of Commerce in 1995. That document summarized procedures that were to be used by scientists throughout the United States to develop consistent and reliable coastal land cover and benthic habitat information. Advances in technology and new methodologies for generating these data created the need for this updated report, which builds upon the foundation of its predecessor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aerial imagery collected before and after major storm events is ideal for the assessment of coastal landscape change driven by individual high-magnitude events. Using traditional satellite sensors and manned aerial systems can be challenging due to issues related to cloud cover, mobilization expenses and resolution. Rapid advances in unmanned aerial vehicle (UAV) technology allow for the cost-effective collection of aerial imagery and topography at centimetre resolution suitable for assessing change in coastal ecosystems. In this study we demonstrate the utility of UAV-based photogrammetry to quantify storm-driven sediment dynamics on a sandy beach on the open-coast shoreline of Victoria, Australia. UAV-based aerial photography was collected before and after a major storm event. High-resolution (< 5 cm) aerial imagery and digital surface models were acquired and change-detection techniques were applied to quantify changes in the beachface. An average beach erosion of 12.24 m3/m with a maximum of 28.05 m3/m was observed, and the volume of sand cut from the beachface and retreat of the foredune are clearly illustrated. Following the storm event, erosion was estimated at 7259.94 ± 503.69 m3 along 550 m of beach. By combining the aerial imagery and derived topographic datasets we demonstrate the advantage of UAV-based photogrammetry techniques for rapid high-resolution data collection in semi-remote locations. Its utility in setting unlimited virtual vantage points is also illustrated and the valuable perspective it provides for tracking landscape change discussed.