997 resultados para Coal slurry pipelines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title : Environmental impact statement energy transportation system, inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The project improves understanding of wear in slurry pumps. By measuring actual pump wear and microscopically examining worn surfaces, a clearer picture emerged of wear modes and mechanisms for different materials. This enables improved guidelines for material selection and modifications to hydraulic shape that increased pump wear life.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation established a standard foam index: the absolute foam index test. This test characterized a wide range of coal fly ash by the absolute volume of air-entraining admixture (AEA) necessary to produce a 15-second metastable foam in a coal fly ash-cement slurry in a specified time. The absolute foam index test was used to characterize fly ash samples having loss on ignition (LOI) values that ranged from 0.17 to 23.3 %wt. The absolute foam index characterized the fly ash samples by absolute volume of AEA, defined as the amount of undiluted AEA solution added to obtain a 15-minute endpoint signified by 15-second metastable foam. Results were compared from several foam index test time trials that used different initial test concentrations to reach termination at selected times. Based on the coefficient of variation (CV), a 15-minute endpoint, with limits of 12 to 18 minutes was chosen. Various initial test concentrations were used to accomplish consistent contact times and concentration gradients for the 15-minute test endpoint for the fly ash samples. A set of four standard concentrations for the absolute foam index test were defined by regression analyses and a procedure simplifying the test process. The set of standard concentrations for the absolute foam index test was determined by analyzing experimental results of 80 tests on coal fly ashes with loss on ignition (LOI) values ranging from 0.39 to 23.3 wt.%. A regression analysis informed selection of four concentrations (2, 6, 10, and 15 vol.% AEA) that are expected to accommodate fly ashes with 0.39 to 23.3 wt.% LOI, depending on the AEA type. Higher concentrations should be used for high-LOI fly ash when necessary. A procedure developed using these standard concentrations is expected to require only 1-3 trials to meet specified endpoint criteria for most fly ashes. The AEA solution concentration that achieved the metastable foam in the foam index test was compared to the AEA equilibrium concentration obtained from the direct adsorption isotherm test with the same fly ash. The results showed that the AEA concentration that satisfied the absolute foam index test was much less than the equilibrium concentration. This indicated that the absolute foam index test was not at or near equilibrium. Rather, it was a dynamic test where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms. Equilibrium isotherm equations obtained from direct isotherm tests were used to calculate the equilibrium concentrations and capacities of fly ash from 0.17 to 10.5% LOI. The results showed that the calculated fly ash capacity was much less than capacities obtained from isotherm tests that were conducted with higher initial concentrations. This indicated that the absolute foam index was not equilibrium. Rather, the test is dynamic where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms for fly ash of 0.17 to 10.5% LOI. Several batches of mortars were mixed for the same fly ash type increasing only the AEA concentration (dosage) in each subsequent batch. Mortar air test results for each batch showed for each increase in AEA concentration, air contents increased until a point where the next increase in AEA concentration resulted in no increase in air content. This was maximum air content that could be achieved by the particular mortar system; the system reached its air capacity at the saturation limit. This concentration of AEA was compared to the critical micelle concentration (CMC) for the AEA and the absolute foam index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluidized bed reactor technology was investigated as a means of developing a new simple and low cost process for coal desulfurization. Preliminary experimental results obtained in a 2.54 cm batch fluidized bed reactor have shown that over 80% total sulfur reductions can be achieved by sequential chlorination and dechlorination/ hydrodesulfurization of high sulfur pulverized coals. Proximate and ultimate analyses of desulfurized coals have revealed enhanced carbon and fixed carbon levels and substantially reduced volatile, oxygen and hydrogen contents. While there was a minor increase in the ash content and heating value, nitrogen and chlorine contents were essentially unchanged. Compared to an earlier slurry phase process, the fluidized bed reactors process has specific advantages such as shorter reaction times, fewer processing steps and reduced reactant requirements. A fluidized bed reactor process may thus have a potential of being developed into a simple and economic means of converting high sulfur coals to environmentally acceptable fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results from 10 minidrum centrifuge tests conducted at the Schofield Centre, compiled with 4 additional test results from Thusyanthan et al., 2008. All these tests were designed to measure the uplift resistance of a pipeline installed into stiff clay by trenching and backfilling, then uplifted approximately 3 months after installation. All tests were conducted at 1:30 scale using soil obtained from offshore clay samples. Experimental results show that clay blocks remained intact after 3 prototype months of consolidation, and were lifted rather than sheared during pipe pullout. The uplift resistance therefore depends on the weight of the soil cover and the shearing resistance mobilised at the softening contact points between the intact blocks and within the interstitial slurry. Slow drained pullout led to lower resistance than fast pullout, indicating that the drained response is critical for design. The varying scatter shows that peak uplift resistance is very sensitive to the arrangement of the backfill blocks when the cover and pipe diameter are comparable to the block size. Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE).